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SI Methods
Stimulus Presentation and Data Acquisition. Stimulus presenta-
tion and data acquisition were automated by custom Matlab
(MathWorks) scripts using the Psychophysics Toolbox extensions
(1). Stimuli were presented on a touch-sensitive computer screen,
which also recorded the bird’s peck responses. During testing,
birds were placed inside a custom apparatus (2) in a sitting
position facing the screen. The bird’s torso was wrapped in a
cloth sleeve with the torso’s midsagittal axis aligned with the
center of the screen and orthogonal to the screen. To begin a
trial, a small (±5 mm) zeroing cross appeared at the center of
the screen. The chicken had to peck accurately on the cross
(within 10 mm) to initiate a trial. This action forced the head
and eyes into a standard position relative to the screen for the
next ∼150 to 200 ms (e.g., Fig. S3A) (3). The stimulus array
was presented on the screen for 50 ms immediately following
a peck on the cross. The array disappeared before the chicken
had a chance to move from the standard position; the earliest
movement onsets occurred at latencies of ∼200 ms (Fig. S3 B
and C, reaction times for highest relative target strengths).
Pecking includes a stereotyped action pattern of binocular,

frontal fixation during which the eyes assume a standard position
in the head (3, 4). Therefore, following a peck, the orientation of
the eyes relative to the stimulus can be inferred with high re-
liability from the position (location and orientation) of the head
relative to the stimulus. By monitoring head orientation in our
experiments, stimuli could be presented at consistent, defined
locations in the bird’s visual field. Head position and orientation
were monitored in real time with submillimeter spatial and high
temporal (120 Hz) resolution with an infrared-based tracking
system (Natural Point; OptiTrack Systems). In addition, the timing
and location of each peck on the touch screen, as well as details
regarding the stimulus configuration, were stored offline for
post-hoc analyses.

Training and Testing. Training was accomplished in four stages.
In the first stage, the birds were trained to peck at the location
of a briefly flashed target. In the second stage, response boxes
were introduced on the side of the target and the bird was re-
warded for pecking at the location of the response box nearest
the target. In the third stage, the distracter was introduced on
the side opposite the target, and birds were rewarded for pecking
on the response box nearest the target (stimulus on that side)
while ignoring the distracter (stimulus on the opposite side) and
were punished with a time-out (10–15 s) for pecking on the
side of the distracter. In the final stage, cues were added to the
task. Birds were punished (time-outs) for pecking at the location
of the cue before the appearance of the target. During the
testing phase, a peck at any location on the screen (other than
the zeroing cross) before the target was presented, terminated
the trial. A movie of a well-trained bird (bird 1) performing
the task is provided in Movie S1.
For each bird on each day, data were acquired in two successive

sessions of ∼100 trials each, with a brief (10-min) break in be-
tween. The two test sessions were preceded by a warm-up session
(∼50 trials) to verify that the bird was engaged in the task, and to
permit behavior to stabilize before beginning data collection.
Data from these warm-up sessions were excluded from the
analysis. For the cued–uncued measurements, data were acquired
from three birds (n = 199 experimental sessions). For the
validly–invalidly cued measurements, data were acquired from
these same three birds plus a fourth bird (n = 211 experimental

sessions). During the testing phase, pecks to the incorrect side
(side opposite the response boxes) almost never occurred; when
these occurred the corresponding trials were excluded from
analysis. Overall, such pecks occurred on less than 0.1% of all
trials; the proportions were similar for each bird for the cued-
uncued and validly-invalidly cued tasks.

Analysis of Percent Correct (Hit Rate) and Response Times.We analyzed
the data first, as if they were acquired with a two-alternative forced
choice (2-AFC) design (choice of upper vs. lower box). Percent
correct (hit rate) was computed as the proportion of correctly
localized targets as a fraction of the total number of correctly and
incorrectly localized targets (Go response). For these analyses,
peck responses above the horizon were scored as signifying se-
lection of the upper target, and responses below the horizon as
signifying selection of the lower target. Excluding rare, ambiguous
responses (<±5 mm from the horizon) from the analysis provided
similar results.
Percent correct was computed individually for each target and

distracter contrast (9 × 9 matrix in Fig. 1 B–E) after combining
data across the left and right hemifields (except for head position
analysis where each hemifield was treated separately; Fig. S6)
and across experimental sessions. Percent correct was plotted as
a function of relative target strength by pooling data from trials
with equivalent target-to-distracter contrast ratios (the diagonally
aligned entries in the performance matrix, orthogonal to the
arrow; Fig. 1 B–E).
Response times were computed as the time from stimulus array

presentation until the peck on the response box, as acquired from
the touch screen. Only correct trials (hits) were included in com-
puting response times. In addition, we also computed the reaction
time, based on the time from stimulus array presentation until the
initiation of a head orienting response (Fig. S3). These orienting
movements were apparent in the lateral (azimuthal) direction
(left vs. right), and the onsets were detected as an abrupt change
in slope by a custom temporal edge-detection algorithm imple-
mented in Matlab; representative onsets detected by the algo-
rithm are shown in Fig. S3A (arrows).

Curve Fits for Percent Correct and Response Time Data. Percent cor-
rect data as a function of relative target strength were fit with a
cumulative Gaussian function of the form

p = pmax F
�
mðTrel −Trel-50Þ

�
where p represents the percent correct, Trel represents the rela-
tive target strength, i.e, the target-to-distracter contrast ratio (log
units), F the cumulative Gaussian function, pmax the asymptotic
performance, m a slope parameter, and Trel-50 the relative tar-
get strength at which p reaches half of its maximum value. In
addition, we defined the parameter r50 as the value of Trel at
which performance reached 50% of its maximal range across
all values of tested relative target strengths. All fits were per-
formed after subtracting baseline chance performance (50%).
Response and reaction time data were fit with a three-parameter

power law function of the form

MRT = γ + αc−β

where MRT represents the mean response (or reaction) time, c
the stimulus contrast, γ an offset parameter, and α and β the
scaling and exponent (slope) parameters, respectively. Following
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a logarithmic transformation, β represents the slope of a linear
fit of the response time as a function of contrast [log(MRT-γ)
vs. log(c)]. Such a power law dependence of response times on
stimulus strength is well documented in human psychophysics,
and is referred to as Pieron’s law (5). The offset parameter
(γ), which represents the asymptotic response time, could not
be reliably estimated for the uncued and invalidly cued trials
because the response time data did not asymptote even at the
highest Trel values tested. Hence, γ, for the uncued (or invalidly
cued) trials was assumed to be identical to that of the interleaved
cued (or validly cued) trials, and only α and β were permitted to
vary (Fig. S2).
Unless noted otherwise, error bars represent SEs across ex-

perimental sessions, computed with the jack-knife procedure
(described in detail in ref. 2). All curve fitting was done with
a nonlinear, least squares curve-fitting algorithm as implemented
by the lsqcurvefit function in Matlab.

Signal Detection Analysis with the 2-AFC Model. We used a signal
detection model for the 2-AFC task that incorporates bias (6). Hit
rates (h) were arbitrarily assigned as the proportion of correctly
localized upper targets, and false-alarm rates (f) arbitrarily as-
signed as the proportion of incorrectly localized lower targets (by
construction of the 2-AFC signal detection model, the converse
assignations for hit and false-alarm rates should provide identical
d′ values). Localization accuracy (d′) and bias (b) were computed
from the following relations (7):

d′=Φ−1ðhÞ−Φ−1ðf Þ

b=
1
2
�
Φ−1ðhÞ+Φ−1ð f Þ�

where Φ−1 denotes the inverse of the cumulative unit normal
(Gaussian) distribution function. Accuracy (d′) and bias (b) were
computed independently for each combination of target and
distracter contrasts; for stimuli of matching strengths, an equal-
variance signal detection model (as used here) is appropriate (8).
Average d′ and b were computed for each relative target strength
(by averaging across the diagonal entries) or absolute target contrast
(by averaging across distracter contrasts) to produce the psycho-
metric functions shown in Fig. 2.
Psychometric functions describing the variation of d′ with

relative target strength were fit with a three-parameter cumula-
tive Gaussian function (as described above), whereas those de-
scribing the variation of d′ with absolute target contrast were fit
with a three-parameter Naka–Rushton function of the form

d′= dmax
cn

cn + cn50

where c denotes the stimulus contrast, d′ denotes the localization
accuracy, dmax denotes asymptotic accuracy, n denotes the slope
parameter, and c50 denotes the contrast at which accuracy reached
50% of maximum. The claim regarding the effects of spatial cue-
ing as a contrast gain (reduction in c50) was also confirmed with
the parameters derived from the psychometric fits to d′.

Testing for Significant Differences Between Cued and Uncued Per-
formance (Bootstrap Analysis).We used a bootstrap procedure (9)
to estimate significant differences between cued vs. uncued (or
validly vs. invalidly cued) localization accuracy values, mean
response times, or parameters of the psychometric function. The
bootstrap analysis was performed by randomly interchanging
trial labels (cued vs. uncued or validly vs. invalidly cued) for all
trials in an experiment, and independently for all experiments.
We repeated this procedure 1,000–10,000 times, and the differ-
ences between the quantities of interest (accuracy, MRT, dmax,

etc.) were computed for each permutation to create a boot-
strap (null) distribution. The number of potential permutations
was several orders of magnitude greater (2N, where N, the
number of experiments, was ∼200) than the number of repe-
titions (103 or 104), thereby permitting unique permutations.
One-tailed P values reported represent the proportion of values
in the bootstrap distribution that were smaller (or larger) than
the observed differences between the quantities or computed
parameters, depending on the a priori hypothesis for the di-
rection of the change (cueing was hypothesized to improve,
and distracters to degrade, all performance metrics). For
each analysis, P values were Bonferroni corrected for multiple
comparisons.

Signal Detection Analysis with the Two-Alternative Unforced Choice
Model. In our tasks, birds could provide a NoGo response (two
pecks on the zeroing cross) following the appearance of the re-
sponse boxes, and receive an uncertain reward (reward proba-
bility = 0.33). Such tasks have been referred to as “unforced”
choice or “uncertain option” tasks in the literature (10). Such a
two-alternative unforced-choice (2-AUFC) design permitted us
to estimate the birds’ choice certainty in this task.
The conventional 2-AFC signal detection model (described

above) is not sufficient to analyze NoGo responses. Therefore,
we developed a signal detection model for the 2-AUFC task to
analyze the NoGo responses. In this model, a NoGo response
occurs whenever the evidence does not strongly favor the pres-
ence of a stimulus at either of the two locations (upper vs. lower)
(Fig. 3A). This happens on trials in which the decision variable
(SI Appendix) falls between two criterion values (biases, b1 and
b2; Fig. 3A, thick vertical lines). In trials for which the decision
variable falls outside these values, Go responses are generated
to either location depending on the domain of decision space in
which the decision variable falls (less than −b1 or greater
than +b2). The biases b1 and b2 are, in principle, independent
of d′ and we hypothesized that the values of these biases (their
range or the sum of their absolute values: jb1j + jb2j) were
produced by a process that reflected the bird’s choice certainty
with generating a Go response.
The model permitted establishing an analytical relationship

between the localization accuracy (d′); biases (b1 and b2); and the
proportion of NoGo responses (pN), correct Go responses (hits,
pH), and incorrect Go responses (errors, pE):

pH =
1
2

�
Φ
�
d′
2
− b1

�
+Φ

�
d′
2
− b2

��

pE= 1−
1
2

�
Φ
�
d′
2
+ b1

�
+Φ

�
d′
2
+ b2

��

pN =
1
2

�
Φ
�
d′
2
+ b1

�
+Φ

�
d′
2
+ b2

��

−
1
2

�
Φ
�
d′
2
− b1

�
+Φ

�
d′
2
− b2

��

where Φ denotes the cumulative unit normal (Gaussian) distri-
bution function; we have assumed equal prior probabilities for
targets at the two locations (upper vs. lower). The derivation of
these relationships is provided in SI Appendix, and is based on
a latent variable formulation similar to the one used in ref. 7.
Based on the observed data, these analytical relationships were

used to derivemaximum likelihood (ML) estimates for the accuracy
and bias parameters (d′, b1, b2).ML estimates were generated using
constrained optimization (line search), as implemented by the
fmincon function in Matlab, with the constraint that all of the pa-
rameters had to be positive. Randomization tests based on the χ2
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statistic were used to evaluate the goodness-of-fit of the 2-AUFC
model to behavioral data.
In addition to fitting the model to the entirety of the observed

responses, we evaluated the ability of the model to accurately
describe behavior by fitting the model to a subset of stimulus-
response contingencies, and generating predictions for the re-
maining stimulus-response contingencies (not used in fitting the
model). Such a procedure provides an internal test of model
validity in describing behavior (ref. 6, p. 193). Model predictions
were generated as follows. The 2-AUFC task provides a 2 × 3
stimulus–response contingency table: For each of two stimulus
events (target upper vs. lower), one of three response types can
occur (Go response upper, Go response lower, or NoGo). Of
the three (conditional) response probabilities for each of the
stimulus events, only four (two for each contingency) are free
to vary independently, as the three conditional response proba-
bilities for each stimulus event are mutually exclusive and ex-
haustive (have to sum to 1). On the other hand, the 2-AUFC
model is a three-parameter model (d′, b1, b2) that requires only
three independent observations for parameter estimation. Thus,
there is a surplus of independent observations (one extra degree
of freedom) relative to the number of free parameters.
By estimating 2-AUFC parameters from observed response

proportions for only three (of six) contingencies, we predicted the
value of the remaining one independent, and two dependent,
contingencies. The three contingencies used to fit the model were
repeatedly sampled from among the various possible combina-
tions of the six stimulus–response contingencies (with at least one
from each stimulus event), and predictions were, in turn, gen-
erated for the remaining contingencies (Fig. S4A). The model fit
was performed separately for each target contrast, averaging
across distracter contrasts.

Control for Overt Biases in Head Position at the Time of Target
Presentation. Head position (x/y/z corresponding to azimuth, ele-
vation, and distance from the screen, respectively) and orientation
(roll/pitch/yaw) were acquired in real time based on an infrared-
based motion capture system (Natural Point; Optitrack V120
Duo). The system has a 120-Hz sampling rate (8.33-ms sampling
period), and submillimeter spatial resolution in all three di-
mensions. Measurements of head position were based on three
to four infrared reflective markers in a triangular/quadrangular
configuration (∼1.5 to 2.0-cm spacing between markers) placed on
a mount attached to the head (Movie S1). Motion capture data
were analyzed (with custom software) offline to identify and ex-
clude trials in which the head position was systematically dif-
ferent between cued and uncued (or between validly and
invalidly cued) trials at the time of stimulus presentation. Specif-
ically, we looked for horizontal head displacement (Δ) and rota-
tion (yaw, θ; Fig. 5A) during the stimulus presentation period, in
a window from 0 to 75 ms following the peck that triggered the
stimulus array. We identified trials with closely matchingΔ and
θ values (tolerance: Δ = ±0.5 mm; θ = ±1°, the linear and angular
resolution, respectively, of our motion capture technique) be-
tween cued and uncued (or validly and invalidly cued) trials for
each bird (including all trials of each type), and separately for
stimuli on either side (left vs. right). The very stringent tolerance
limits for matching Δ and θ values resulted in a large proportion of
the trials being excluded following the matching procedure:
∼50% for the cued/uncued task and ∼75% for the valid/invalid
cue task. The proportion of excluded trials is greater in the valid/
invalid cued task due to the very small proportion of invalidly cued
trials (∼10%) to which Δ and θ in the validly cued trials were
stringently matched. The stringent tolerance for Δ and θ ensured
that following the matching procedure, distributions of Δ and θ
values closely overlapped across cued and uncued (or validly and
invalidly cued) trials (Fig. S6A and B, green; data from bird 1). The
data were reanalyzed after excluding trials that fell outside this

region of overlap (Fig. 5 B–E, solid lines); despite the removal of
a significant proportion of trials, the results resembled the original
results based on the entire dataset (Fig. 5 B–E, dashed lines).

SI Appendix: 2-AUFC Model
We derive a signal detection model for a 2-AUFC task. In such
tasks, a subject can make either a Go response to report one of
two mutually exclusive stimuli, or a NoGo (or an opt-out or
“Don’t know”) response. NoGo responses are rewarded with a
smaller reward (or on a smaller proportion of trials) than accurate
Go responses.
We base the model on a 2-AUFC spatial localization task in

which the subject is required to discriminate between two po-
tential target locations (e.g., upper vs. lower), although the model
is generally applicable to a variety of 2-AUFC discriminations
(color, orientation, etc.).
The 2 × 3 contingency table for a 2-AUFC task consists of two

stimulus events (a stimulus at one of two locations) and three
response types (Go response at either one of the two locations or
a NoGo response) (see table below). We use the following no-
tation for the stimulus and response events (ref. 7): Xi is a ran-
dom variable that denotes the location of the stimulus on each
trial, Xi = 1 indicates the presentation of a stimulus at location i,
and Xi = 0, otherwise. In our 2-AUFC localization task, a stimulus
is always presented at one of two locations on each trial. Hence,
the following condition is necessarily fulfilled: X1 +X2 = 1. Y is
a variable that denotes the response on each trial; Y = 1 indicates
a Go response to location 1, Y = 2 indicates a Go response to
location 2, and Y = 0 indicates a NoGo response.
We develop a latent variable formulation that relates the

conditional probability of each type of response for each stimulus
event to the underlying psychophysical parameters: accuracy
and bias.
As in conventional signal detection theory (SDT), we define a

decision variable, Ψi, that encodes sensory evidence at each lo-
cation, i ði∈ f1; 2gÞ. For the task described in the text, indices 1
and 2 represent upper and lower locations, respectively.
The decision variable distribution at each location i is defined

as follows:

Ψi = dXi + «i [S1]

where «i represents the distribution of the decision variable when
no stimulus is presented (noise distribution). In other words, the
mean of the decision variable distribution at a location is pro-
portional to the strength of the stimulus at that location (d), and
the variance of the decision variable distribution represents the
noisiness of the sensory evidence. In line with conventional SDT,
the «i follows a unit normal distribution,Nðμ= 0; σ = 1Þ (zero-mean
Gaussian distribution with unit variance). In addition, the decision
variable at each location is assumed to be independently distrib-
uted (no interaction terms). Note that for unit normal noise, the
metric d also represents the discriminability (or overlap) of theΨ
distributions for the two stimulus events (Fig. 3A).
The subject’s choice of response (Y) depends on the following

decision rule:

Y = 1  if  Ψ1 >Ψ2 + b2
Y = 2  if  Ψ2 >Ψ1 + b1
Y = 0  if  Ψ1 ≤Ψ2 + b2  and  Ψ2 ≤Ψ1 + b1

[S2]

where the two criterion values, b1 and b2 (biases), determine
cutoff values of the Ψ1 and Ψ2 decision variables, respectively. This
decision rule is used by the subject for reporting a Go response to
location 1 ðY = 1Þ or location 2 ðY = 2Þ, or a NoGo response
ðY = 0Þ (Fig. 3A, b1; b2 ≥ 0).
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With this formulation, we derive the hit rate at location 1, i.e.,
the probability of a response to location 1 when a stimulus was
presented at location 1.

pðY = 1jX1 = 1;X2 = 0Þ= pðΨ1 >Ψ2 + b2jX1 = 1;X2 = 0Þ
= pðdX1 + «1 > dX2 + «2 + b2jX1 = 1;X2 = 0Þ
= pðd+ «1 > «2 + b2Þ
= pð«2 − «1 < d− b2Þ:

Because «1 and «2 are zero-mean, independent, Gaussian-
distributed random variables, their difference is also a zero-mean
Gaussian-distributed variable with a variance that is the sum of
the two individual variances. We scale either side of the in-
equality with the SD of «2 − «1 ðσ = ffiffiffi

2
p Þ, to make the distribu-

tion unit normal.

pðY = 1jX1 = 1;X2 = 0Þ = p
�
«2 − «1ffiffiffi

2
p <

d− b2ffiffiffi
2

p
�

=Φ
�
d− b2ffiffiffi

2
p

� [S3]

where Φ denotes the cumulative distribution function of the unit
normal distribution.
Next, we derive the false-alarm (or error) rate at location 1, i.e.,

the probability of a response at location 1 when a stimulus was
presented at location 2.

pðY = 1jX1 = 0;X2 = 1Þ= pðΨ1 >Ψ2 + b2jX1 = 0;X2 = 1Þ
= pðdX1 + «1 > dX2 + «2 + b2jX1 = 0;X2 = 1Þ
= pð«1 > d+ «2 + b2Þ
= pð«2 − «1 < − ðd+ b2ÞÞ

=Φ
�
−ðd+ b2Þffiffiffi

2
p

�

= 1−Φ
�
d+ b2ffiffiffi

2
p

�
[S4]

where we have used the identity, Φð−xÞ= 1−ΦðxÞ.
Finally, we derive the “miss” rate for location 1, i.e., the prob-

ability of a NoGo response when a stimulus was presented at
location 1.

pðY = 0jX1 = 1;X2 = 0Þ
= pðΨ1 ≤Ψ2 + b2 ∩ Ψ2 ≤Ψ1 + b1jX1 = 1;X2 = 0Þ
= pðdX1 + «1 ≤ dX2 + «2 + b2 ∩

dX2 + «2 ≤ dX1 + «1 + b1jX1 = 1;X2 = 0Þ
= pðd+ «1 ≤ «2 + b2 ∩ «2 ≤ d+ «1 + b1Þ
= pð«2 − «1 ≥ d− b2 ∩ «2 − «1 ≤ d+ b1Þ

=
Zðd+b1Þ=

ffiffi
2

p

ðd−b2Þ=
ffiffi
2

p
f
�
«̂
�
d«̂

=Φ
�
d+ b1ffiffiffi

2
p

�
−Φ

�
d− b2ffiffiffi

2
p

�

[S5]

where «̂= ð«2 − «1Þ=
ffiffiffi
2

p
and we have used the identity,

R b
a f ð«̂Þd«̂=

ΦðbÞ−ΦðaÞ (as before, Φ denotes the cumulative distribution
function of the unit normal distribution).
In a similar fashion, we derive the hit rate, false-alarm (or error)

rate, and miss rate (NoGo response probability) for location 2.

pðY = 2jX1 = 0;X2 = 1Þ=Φ
�
d− b1ffiffiffi

2
p

�
[S6]

pðY = 2jX1 = 1;X2 = 0Þ= 1−Φ
�
d+ b1ffiffiffi

2
p

�
[S7]

pðY = 0jX1 = 0;X2 = 1Þ=Φ
�
d+ b2ffiffiffi

2
p

�
−Φ

�
d− b1ffiffiffi

2
p

�
[S8]

This completes the model formulation, except for a scaling
factor. This factor arises because the parameters d; b1; b2 are all
represented along orthogonal decision axes in the model. On the
other hand, the axis of discrimination (connecting the centers of
the Ψ distributions for each stimulus event) follows an angle of
45° with respect to these decision axes. Hence, upon projecting
each parameter onto the discrimination axis (decision axis of Fig.
3A) a scaling factor of 1=

ffiffiffi
2

p
must be applied to each parameter.

In addition, as d=
ffiffiffi
2

p
represents the displacement of each dis-

tribution from their midpoint, it must be doubled to obtain the
distance between their centers (d′ in Fig. 3A).
Thus, we compute these scaled parameters as

d̂=
2dffiffiffi
2

p =
ffiffiffi
2

p
d  bb1 = b1ffiffiffi

2
p   bb2 = b2ffiffiffi

2
p : [S9]

These parameters, d̂; bb1; and bb2, are referred to as d′, b1, and
b2, respectively in the main text.
The following 2 × 3 contingency table summarizes the re-

sponse probabilities and their relationship to the parameters
d′; b1; b2, as defined in the main text (Fig. 3A).

The proportion of correct (hits, pH), incorrect (error, pE), and
NoGo (miss, pN) responses are given by multiplying the condi-
tional probabilities with the prior probability of each stimulus
event (e.g., upper or lower):

pH = pðY = 1jX1 = 1;X2 = 0Þ pðX1 = 1;X2 = 0Þ
+ pðY = 2jX1 = 0;X2 = 1Þ pðX1 = 0;X2 = 1Þ

pE = pðY = 2jX1 = 1;X2 = 0Þ pðX1 = 1;X2 = 0Þ
+ pðY = 1jX1 = 0;X2 = 1Þ pðX1 = 0;X2 = 1Þ

pN = pðY = 0jX1 = 1;X2 = 0Þ pðX1 = 1;X2 = 0Þ
+ pðY = 0jX1 = 0;X2 = 1Þ pðX1 = 0;X2 = 1Þ:

For equal prior probabilities for the two stimulus events
½ pðX1 = 1;X2 = 0Þ= pðX1 = 0;X2 = 1Þ= 0:5�, these relationships are

pH =
1
2

�
Φ
�
d′
2
− b1

�
+Φ

�
d′
2
− b2

��

pE = 1−
1
2

�
Φ
�
d′
2
+ b1

�
+Φ

�
d′
2
+ b2

��

pN =
1
2

�
Φ
�
d′
2
+ b1

�
+Φ

�
d′
2
+ b2

��
−
1
2

�
Φ
�
d′
2
− b1

�
+Φ

�
d′
2
− b2

��
:

[S10]

These represent the variation of correct responses, errors and
misses with d′, b1, and b2 described in the main text and SI Methods.

Response
probability

Go response
at location 1,

Y = 1

Go response
at location 2,

Y = 2 NoGo response, Y = 0

Stimulus at
location 1
ðX1 =1,X2 = 0Þ

Φ
	
d′
2 −b2



1−Φ

	
d′
2 +b1



Φ
	
d′
2 +b1



−Φ

	
d′
2 −b2




Stimulus at
location 2
ðX1 =0,X2 = 1Þ

1−Φ
	
d′
2 +b2



Φ
	
d′
2 −b1



Φ
	
d′
2 +b2



−Φ

	
d′
2 −b1
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Fig. S1. Spatial cueing effects for individual birds. (A) Psychometric functions of localization accuracy (d′, 2-AFC) without (gray) and with (red) the cue for an
individual bird (bird 1), as function of relative target strength (Trel). Other conventions are the same as in Fig. 2B (n = 87 experiments). (B) Psychometric
functions of response time without (gray) and with (red) the cue for an individual bird (bird 1). Other conventions are the same as in Fig. 1G. (C and D) Same as
in A and B except for bird 2 (n = 44 experiments). (E and F) Same as in A and B except for bird 3 (n = 68 experiments).
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Fig. S6. Joint distribution of head lateral displacement and yaw in cued and uncued trials. (A) Joint distribution of Δ and θ (Fig. 5A) during target array pre-
sentation (0–75 ms following array onset) on trials without (gray circles) or with (red circles) a spatial cue (data from an individual bird). In these trials, the target
was presented on the left side. Green circles are the Δ and θ values matched across uncued and cued trials (tolerance window: Δ = ±0.5 mm; θ = ±1°). Red circles
(outside the green region) represent trials with a head position bias during cued trials that was not matched in uncued trials (or vice versa, for gray circles). Dashed
lines represent Δ = 0 mm and θ = 0°. (Left Inset) Marginal distribution of Δ. The gray arrow is the target location. (Lower Inset) Marginal distribution of θ. Curves
represent Gaussian fits (gray is uncued and red is cued). (B) Same as in A, but joint distribution of Δ and θ for targets presented on the right side.

Movie S1. Chicken performing a cued target localization (filtering) task. The sequence of events is described in Results and Methods and depicted in Figs. 1A
and 4A. The movie here shows a modified version of the task described in the main text, in that the stimuli are presented further away from the zeroing cross
and response boxes are presented away from the stimuli, and closer to the zeroing cross.

Movie S1
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