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Abstract

We describe a neurobiologically plausible model to implatryynamic routing
using the concept of neuronal communication through nerocoherence. The
model has a three-tier architecture: a raw input tier, aimgutontrol tier, and an
invariant output tier. The correct mapping between input antput tiers is re-
alized by an appropriate alignment of the phases of thepes/e background
oscillations by the routing control units. We present amaxia architecture, im-
plemented on a neuromorphic chip, that is able to achiegealeir-shift invariance.
A simple extension to our model can accomplish circulaftshyinamic routing
with only O(V) connections, compared to §¢) connections required by tradi-
tional models.

1 Dynamic Routing Circuit Modelsfor Circular-Shift Invariance

Dynamic routing circuit models are among the most promimentral models for invariant recogni-
tion [1] (also see [2] for review). These models implemeitift gvariance by dynamically changing
spatial connectivity to transform an object to a standarsitfpm or orientation. The connectivity
between the raw input and invariant output layers is colettidby routing units, which turn certain
subsets of connections on or off (Figure 1A). An importaatdiee of this model is the explicit rep-
resentation ofvhat andwhere information in the main network and the routing units, respely;
the routing units use thehere information to create invariant representations.

Traditional solutions for shift invariance are neurobgitmlly implausible for at least two reasons.
First, there are too many synaptic connections: fdlinput neurons,N output neurons andv
possible input-output mappings, the network require®’&(connections in the routing layer—
between each of th&¥ routing units and each set 8f connections that that routing unit gates (Figure
1A). Second, these connections must be extremely pre@sé:reuting unit must activate an input-
output mapping & individual connections) corresponding to the desiredtglai highlighted in
Figure 1A). Other approaches that have been proposeddinglinvariant feature networks [3,4],
also suffer from significant drawbacks, such as the ingtidiexplicitly represenivhereinformation
[2]. It remains an open question how biology could achiev# sivariance without profligate and
precise connections.

In this article, we propose a simple solution for shift ingace for quantities that are circular or
periodic in nature—circular-shift invariance (CSl)—oriation invariance in vision and key invari-
ance in music. The visual system may create orientatioariamt representations to aid recognition
under conditions of object rotation or head-tilt [5,6]; andar mechanism could be employed by
the auditory system to create key-invariant represemstimder conditions where the same melody
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Figure 1: Dynamic routingA In traditional dynamic routing, connections from the (ramgut layer

to the (invariant) output layer are gated by routing unit. iRstance, the mapping from Ato 5, B to
6, ..., Fto 4is achieved by turning on the highlighted rogitimit. B In time-division multiplexing
(TDM), the encoder samples input channels periodicallinfua rotating switch) while the decoder
sends each sample to the appropriate output channel (bagsdime bin). TDM can be extended to
achieve a circular-shift transformation by altering thglarbetween encoder and decoder switches
(9), thereby creating a rotated mapping between input andubat@nnels (adapted from [7]).

is played in different keys. Similar to orientation, whicha periodic quantity, musical notes one
octave apart sound alike, a phenomenon known as octaveatenoe [8]. Thus, the problems of
key invariance and orientation invariance admit simildugons.

Deriving inspiration from time-division multiplexing (TH), we propose a neural network for CSI
that uses phase to encode and decode information. We medié&temporal window of commu-
nication between (raw) input and (invariant) output nesrtmachieve the appropriate input—output
mapping. Extending TDM, any particular circular-shiftrisformation can be accomplished by
changing the relative anglé, between the rotating switches of the encoder (that encibeesaw
input in time) and decoder (that decodes the invariant dutptime) (Figure 1B). This obviates the
need to hardwire routing control units that specifically mlate the strength of each possible input-
output connection, thereby significantly reducing the claxipy inherent in the traditional dynamic
routing solution. Similarly, a remapping between the ingadl output neurons can be achieved by
introducing a relative phase-shift in their backgroundltzt®ns.

2 Dynamic Routing through Neuronal Coherence

To modulate the temporal window of communication, the madels a ring of neurons (tloscilla-
tion ring) to select the pool of neurons (in thmjection ring) that encode or decode information at a
particular time (Figure 2A). Each projection pool encodepecific value of the feature (for exam-
ple, one of twelve musical notes). Upon activation by exdemmput, each pool is active only when
background inhibition generated by the oscillation ringtés ring of neurons) is at a minimum. In
addition to exciting 12 inhibitory interneurons in the pdijion ring, each oscillation ring neuron
excites its nearest 18 neighbors in the clockwise direarund the oscillation ring. As a result, a
wave of inhibition travels around the projection ring thiédas only one pool to be excitable at any
point in time. These neurons become excitable at roughlygdnee time (numbered sectors, inner
ring) by virtue of recurrent excitatory intra-pool conneas.

Decoding is accomplished by a second tier of rings (Figure 2ZBe projection ring of the first (in-
put) tier connects all-to-all to the projection ring of tleeend (output) tier. The two oscillation rings
create a window of excitability for the pools of neurons ieittrespective projection rings. Hence,
the most effective communication occurs between input aridud pools that become excitable at
the same time (i.e. are oscillating in phase with one ang&jer

The CSI problem is solved by introducing a phase-shift betwibe input and output tiers. If they
are exactly in phase, then an input pool is simply mappeddotitput pool directly above it. If their
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Figure 2: Double-Ring Network for Encoding and Decoding. The projection (inner) ring is
divided into (humbered) pools. The oscillation (outergrmodulates sub-threshold activity (wave-
forms) of the projection ring by exciting (black distriboii) inhibitory neurons that inhibit neigh-
boring projection neurons. A wave of activity travels arduhe oscillation ring due to asymmetric
excitatory connections, creating a corresponding wavealubitory activity in the projection ring,
such that only one pool of projection neurons is excitaljhékés) at a given timeB Two instances
of the double-ring structure from A. The input projectiongiconnects all-to-all to the output pro-
jection ring (dashed lines). Because each input pool wikespnly during a distinct time bin, and
each output pool is excitable only in a certain time bin, camivation occurs between input and
output pools that are oscillating in phase with each othgprApriate phase offset between input
and output oscillation rings realizes the desired circahaft (input pool H to output pool 1, solid
arrow). C Interactions among pools highlighted in B.

phases are different, the input is dynamically routed togpr@priate circularly shifted position in

the output tier. Such changes in phase are analogous tdiadjtise angle of the rotating switch

at either the encoder or the decoder in TDM (see Figure 1B3r&'is some evidence that neural
systems could employ phase relationships of subthrestsaliflagions to selectively target neural
populations [9-11].

3 Implementation in Silicon

We implemented this solution to CSI on a neuromorphic gilicbip [12]. The neuromorphic chip
has neurons whose properties resemble that of biologicabns; these neurons even have intrin-
sic differences, thereby mimicking heterogeneity in realinobiological systems. The chip uses a
conductance-based spiking model for both inhibitory ancitatory neurons. Inhibitory neurons
project to nearby excitatory and inhibitory neurons viaffudbr network that determines the spread
of inhibition. A lookup table of excitatory synaptic connigty is stored in a separate random-
access memory (RAM) chip. Spikes occurring on-chip are eded to a neuron address, mapped
to synapses (if any) via the lookup table, and routed to ttgeetad on-chip synapse. A universal
serial bus (USB) interface chip communicates spikes to sord & computer, for external input and
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Figure 3: Traveling-wave activity in the oscillation rin§.Population activity (5ms bins) of a pool
of eighteen (adjacent) oscillation neurorikIncreasing the strength of feedforward excitation led
to increasing frequencies of periodic firing in thenda range (1-10 Hz). Strength of excitation
is the amplitude change in post-synaptic conductance daesiiogle pre-synaptic spike (measured
relative to minimum amplitude used).

data analysis, respectively. Simulations on the chip occrgal-time, making it an attractive option
for implementing the model.

We configured the following parameters:

e Magnitude of a potassium M-current: increasing this cuisemagnitude increased the
post-spike repolarization time of the membrane potertiakeby constraining spiking to a
single time bin per cycle.

e The strength of excitatory and inhibitory synapses: a abivalance had to be established
between excitation and inhibition to make only a small stib§@eurons in the projection
rings fire at a time—too much excitation led to widespreaddidand too much inhibition
led to neurons that were entirely silent or fired sporadycall

e The space constant of inhibitory spread: increasing theaspwas effective in preventing
runaway excitation, which could occur due to the recurrenitatory connections.

We were able to create a stable traveling wave of backgroatidta within the oscillation ring.
We transiently stimulated a small subset of the neuronschwhiitiated a wave of activity that
propagated in a stable manner around the ring after theiergnsxternal stimulation had ceased
(Figure 3A). The network frequency determined from a Fautignsform of the network activity
smoothed with a non-causal Gaussian kernel (FDHM = 80ms)Anv#3z. The frequency varied
with the strength of the neurons’ excitatory connectiorigfe 3B), measured as the amplitude of
the step increase in membrane conductivity due to the awfva pre-synaptic spike. Over much
of the range of the synaptic strengths tested, we obseradtesbscillations in thé anda bands
(1-10H2); the frequency appeared to increase logarithimiséth synaptic strength.

4 Phase-based Encoding and Decoding

In order to assess the best-case performance of the moedlatkground activity in the input and
output projection rings was derived from the input osditlatring. Their spikes were delivered to
the appropriately circularly-shifted output oscillatioeurons. The asymmetric feedforward con-
nections were disabled in the output oscillation ring. IRstance, in order to achieve a circular shift
by k pools (i.e. mapping input projection pool 1 to output prdéie pool £ + 1, input pool 2 to
output poolk + 2, and so on), activity from the input oscillation neuronssest to input pool 1 was
fed into the output oscillation neurons closest to output o By providing the appropriate phase
difference between input and output oscillation, we wete tbassess the performance of the model
under ideal conditions. In the Discussion section, we dis@ubiologically plausible mechanism to
control the relative phases.
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Figure 4: Phase-based encoding. Rasters indicating tgabif/projection pools in 1ms bins, and
mean phase of firingx’s) for each pool (relative to arbitrary zero time). The absa shows firing
time normalized by the period of oscillation (which may bewerted to firing phase by multiplica-
tion by 27). Under constant input to the input projection ring, theuinpools fire approximately in
sequence. Two cycles of pool activity normalized by maxinfirmg rate for each pool are shown
in left inset (for clarity, pools 1-6 are shown in the top plazied pools 7-12 are shown separately
in the bottom panel); phase of background inhibition of péas shown (below) for reference.
Phase-aligned averagef activity (right inset) showed that the firing times wergatively tight and
uniform across pools: a standard deviation of 0.0945 period equivalently, a spread of 1.135
pools at any instant of time.

We verified that the input projection pools fired in a phasé&esh fashion relative to one another,
a property critical for accurate encoding (see Figure 2). stMaulated all pools in the input pro-
jection ring simultaneously while the input oscillationgiprovided a periodic wave of background
inhibition. The mean phase of firing for each pool (relativeatbitrary zero time) increased nearly
linearly with pool number, thereby providing evidence focarate, phase-based encoding (Figure
4). The firing times of all pools are shown for two cycles ofkground oscillatory activity (Figure 4
left inset). A phase-aligned average' showed that the timing was relatively tight (standard diéwia
1.135 pools) and uniform across pools of neurons (Figuigl inset).

We then characterized the system’s ability to correctlyodecthis encoding under a given circular
shift. The shift was set to seven pools, mapping input pooldutput pool 8, and so on. Each input
pool was stimulated in turn. We expected to see only the gp@tely shifted output pool become
highly active. In fact, not only was this pool active, but ettpools around it were also active,
though to a lesser extent (Figure 5A). Thus, the phase-eddogut was decoded successfully, and
circularly shifted, except that the output units were bipaained.

To quantify the overall precision of encoding and decodimg,constructed amput-locked aver-

age of the tuning curves (Figure 5B): the curves were circulathyfted to the left by an amount
corresponding to the stimulated input pool number, andakepool firing rates were averaged. If
the phase-based encoding and decoding were perfect, thespeald occur at a shift of 7 pools.

The phase-aligned average was constructed by shifting the pool-aciivitgs by the (# of the poolx

(1—12 of the period) to align activity across pools, which was then averaged.
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Figure 5: Decoding phase-encoded inpitin order to assess decoding performance under a given
circular shift (here 7 pools) each input pool was stimulatetlirn and activity in each output pool
was recorded and averaged over 500ms. The pool’'s respomsealized by its maximum firing
rate, is plotted for each stimulated input pool (arrows po@to curves, color code as in Figure 4).
Each input pool stimulation trial consistently resultegh@ak activity in the appropriate output pool;
however, adjacent pools were also active, but to a lessengxesulting in a broad tuning curv@.

The best-fit Gaussian (dot-dashed grey cusve,2.30 pools) to the input-locked average of the raw
pool firing rates (see text for details) revealed a maximutwéen a shift of 7 and 8 pools (inverted
grey triangle; expected peak at a shift of 7 pools).

Indeed, the highest (average) firing rate corresponded hiftao§ 7 pools. However, the activity
corresponding to a shift of 8 pools was nearly equal to that pbols, and the best fitting Gaus-
sian curve to the activity histogram (grey dot-dashed Ipegked at a point between pools 7 and 8
(inverted grey triangle). The standard deviatief) \{vas 2.30 pools, versus the expected ideaf
1.60, which corresponds to the encoding distributiorr (1.135 pools) convolved with itself.

5 Discussion

We have demonstrated a biologically plausible mechanisnthidynamic routing of information
in time that obviates the need for precise gating of conaesti This mechanism requires that a
wave of activity propagate around pools of neurons arramgedring. While previous work has
described traveling waves in a ring of neurons [13], and @boring architecture (for determining
head-direction) [14], our work combines these two feat(es rings with phase-shifted traveling
waves) to achieve dynamic routing. These features of theshawd found in the cortex: Bonhoeffer
and Grinwald [15] describe iso-orientation columns in tla @isual cortex that are arranged in
ring-like pinwheel patterns, with orientation tuning clgarg gradually around the pinwheel center.
Moreover, Rubino et al. [16] have shown that coherent agwilhs can propagate as waves across
the cortical surface in the motor cortex of awake, behavioegkeys performing a delayed reaching
task.

Our solution for CSl is also applicable to music perceptidn.the Western twelve-tone, equal-
temperament tuning system (12-tone scale), each octavwided into twelve logarithmically-
spaced notes. Human observers are known to construct nieptakentations for raw notes that
are invariant of the (perceived) key of the music: a note ok@rt in the key of C-Major is percep-
tually equivalent to the note C# heard in the key of C#-MagL¥]. In previous dynamic routing
models of key invariance, the tonic—the first note of the key.(eC is the tonic of C-Major)—
supplies the equivalenhere information used by routing units that gate precise conoestto
map the raw note into a key-invariant output representdfi@h

To achieve key invariance in our model, the bottom tier eesadw note information while the top

tier decodes key-invariant notes (Figure 6). The middiergeeives the tonic information and aligns
the phase of the first output pool (whose invariant repregiemnt corresponds to the tonic) with the
appropriate input pool (whose raw note representatioresponds to the tonic of the perceived key).
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Figure 6: Phase-based dynamic routing to achieve keyiaves. The input (bottom) tier encodes
raw note information, and the output (top) tier decodes ikeggriant information. The routing
(middle) tier sets the phase of the background wave aciivitiye input and output oscillation rings
(dashed arrows) such that the first output pool is in phade th& input pool representing the note
corresponding to the tonic. On the left, where G is the tomjgyt pool G, output pool 1, and the
routing tier are in phase with one another (black clocks)lenhput pool C and output pool 6 are in
phase with one another (grey clocks). Thus, the raw note igpactivates the invariant output 1,
which corresponds to the perceived tonic invariant repriagé®n (heavy solid arrows). On the right,
the same raw input note, G, is active, but the key is diffeagat A is now the active tonic; thus the
raw input, G, is now mapped to output pool 11.

The tonic information is supplied to a specific pool in thethog ring according to the perceived
key. This pool projects directly down to the input pool cepending to the tonic. This ensures
that the current tonic’s input pool is excitable in the saim@tbin as the first output pool. Each
of the remaining raw input notes of the octave is mapped by tmmning to the corresponding
key-invariant representation in the output tier, as thespbaof input pools are all shifted by the
same amount. Supporting evidence for phase-based enaafdiote information comes from MEG

recordings in humans: the phase of the MEG signal (predantiinaver right hemispheric sensor
locations) tracks the note of the heard note sequence wighisimg accuracy [18].

The input and output tiers’ periods must be kept in lock-stepich can be accomplished through
more plausible means than employed in the current implestientof this model. Here, we main-
tained a fixed phase shift between the input and output asoitl rings by feeding activity from the
input oscillation ring to the appropriately shifted pooltire output oscillation ring. This approach
allowed us to avoid difficulties achieving coherent ostitlas at identical frequencies in the input
and output oscillation rings. Alternatively, entrainmeatild be achieved even when the frequencies
are not identical—a more biologically plausible scenariothé routing ring resets the phase of the
input and output rings on a cycle-by-cycle basis. Lakatcs.ef19] have shown that somatosen-
sory inputs can reset the phase of ongoing neuronal ogmilkain the primary auditory cortex (Al),
which helps in the generation of a unified auditory-tactiggept (the so-called “Hearing-Hands
Effect”).

A simple extension to our model can reduce the number of adiums below the requirements of
traditional dynamic routing models. Instead of havingtatall connections between the input and
output layers, a relay layer of very few{ < N) neurons could be used to transmit the spikes
form the input neurons to the output neurons (analogousetsitigle wire connecting encoder and
decoder in Figure 1B). A small number of (or ideally even oredqy neurons suffices because
encoding and decoding occur flme. Hence, the connections between each input pool and the
relay neurons require @{N) =~ O(N) connections (as long a&/ does not scale withV) and
those between the relay neurons and each output pool r&giréV) ~ O(/N) connections as well.
Thus, by removing all-to-all connectivity between the ihpand output units (a standard feature in
traditional dynamic routing models), the number of recqgiicennections is reduced from ©¢)



to O(N). Further, by replacing the strict pool boundaries withresaneighbor connectivity in the
projection rings, the proposed model can accommodate @écamh of rotation angles.

In summary, we propose that the mechanism of dynamic rothirayigh neuronal coherence could
be a general mechanism that could be used by multiple seasgrynotor modalities in the neo-
cortex: it is particularly suitable for placing raw infortien in an appropriate context (defined by
the routing tier).
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