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Supplemental Data: Appendix
A Demonstration of model identifiability

A.1 Identifiability of of 2-ADC model

In this section, we demonstrate that there is a one-to-one mapping from the set of parameters {d;,c;},7 € {1,2} to the set of
response probabilities of the 2-ADC model. As these proofs do not assume a specific form of the decision variable distribution (e.g.,
Gaussian), we use a slightly different notation for these distributions. Thus, the probability density and the cumulative distribution of
the decision variable distribution at location 7 under noise (catch trials) are given by f; and F}, respectively (Methods). Thus, equation

system 3 can be rewritten as:

p(Y = 1‘X) = / i Fg(@ + d1X1 — d2X2 — (01 — CQ)) fl(e) de
p(Y =2|X) = / ) File+deXo — d1 X1 — (c2 — 1)) fa(e) de (10)
c2—da X2

p(Y = O‘X) = Fl(Cl — lel) FQ(CQ — d2X2)

The proof proceeds in two steps. In the first step, we demonstrate the one-to-one mapping of the choice criteria to the response
probabilities. In the second step, we build upon the previous result to demonstrate the one-to-one mapping of the perceptual sensitivities

to the response probabilities.

One-to-one mapping of the 2-ADC criteria to the response probabilities during catch trials

First, we demonstrate that there is a one-to-one mapping from the set of criteria, (c1, ¢2), to set of response probabilities during
catch trials p§, 7 € {0, 1,2} (as mentioned before, we use pf) as a notational shorthand for p(Y = i|X; = 0, X; = 0)).
We consider the system of response probabilities when no stimulus was presented (X; = Xy = 0), i.e. false-alarm rates at each

location during catch trials:

p(lj /00 Fy(e —c1 4+ ¢2) fi(e) de

C1

p% = / Fi(e —ca+ 1) fale) de 11

C2

We demonstrate that if set of criteria (c1, c2) produces a given set of response probabilities pj), then it is the only set that can

produce these probabilties. The analytical proof rests on the following lemmas:

Lemma 1 pj(c;,c;) is a monotonically decreasing function of ¢; and a monotonically increasing function of c;, i, j €
{12} # .

Lemma 2 p{) is a monotonically increasing function of both ¢; and co. Specifically, p) = Fi(c1) Fa(cs).

Simply put, these lemmas assert that response probabilities vary monotonically as a function of choice criteria. The proof of these
lemmas is provided in Appendices A.1-A.2 (Supplemental Data). The proof assumes no specific form for the functions f; and fa; only

that they are continuous and supported over the entire domain of integration. Upon rearrangement of the identity in Lemma 2:
Fy(ei) = po/ Fj(c;) i,j €{1,2},i#j (12)

The sequence of arguments for the proof follows:
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(i) Let (c1,c) be a set of criteria that produces P} of pj. Assume that there exists another set (¢}, c5) that also produces these same
probabilities, such that at least one cg is distinct from ¢;.

(ii) Without loss of generality, let ¢; > ¢].

(iii) From Lemma 1,
c1 > ¢y = pher, ca) = PE < pi(cy, ca). Similarly,
c1 > ¢} = pdlcr,ca) = P§ > pi(c), ca).

(iv) Hence, it follows that ¢}, > ¢o for constant 733. In other words, if one choice criterion increases, the other must also increase to

keep p} constant.
(v) Being cumulative distribution functions, F;-s are monotonic functions of their arguments. Thus, F'(c;) > F(c}) & ¢1 > €].

(vi) From Lemma 2, (equation 12), and point (v) above: ¢; > ¢} = ¢ < ¢ for constant ’Pg. In other words, if one choice criterion

increases, the other must decrease to keep p)) constant.
The proof follows by contradiction.

One-to-one mapping of the 2-ADC sensitivities to the response probabilities during stimulus trials
Next, we demonstrate, based on the previous result, that there is a one-to-one mapping from the set of sensitivities, (d;, dz) to the
set of response probabilities during stimulus trials p;'-,i €{0,1,2},5 € {1,2}.

For a stimulus presented at location ¢ (X; = 1), response probabilities at location ¢ are given by (refer equation system 10):

p% = / F2<€ + dl —c1 + 62) fl(e) de (13)
c1—dy

p% = / Fi(e+ds —ca+ 1) fa(e) de (14)
62—d2

The proof rests on the following lemma, which is proved in Appendix B.3 (Supplemental Data):
Lemma 3 p;'-(di, d;) is a strictly monotonic function of its arguments (d;, d;),4,j € {1,2},i # j.
The sequence of arguments for the proof follows:

(i) Based on the previous section, we have already established a one-to-one mapping from the set of criteria (c1, ¢2) to the response

probabilities during catch trials. Thus, the criteria are fixed based on the proportion of false-alarms and correct rejections.

(ii) Given a particular (c1, ¢o), each of the probabilities, p1 and p3, in the above system of equations is only a function of its respective
d;,i €{1,2}.

(iii) By Lemma 3, p! is a strictly monotonic function of its respective d;.

(iv) In other words, there is a one-to-one mapping of the d;-s to the respective pi-s.

We have shown that given a set of choice criteria, there is a one-to-one mapping of the sensitivities to the response probabilities.
In the previous section, we showed a similar one-to-one mapping of the choice criteria to the response probabilities. Thus, there is a
one-to-one mapping from the set of parameters {d;, c; },i € {1, 2} to a given set of response probabilities (given by model equations 3).

This completes the proof.
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A.2 Identifiability of of m-ADC model

In the previous section, we showed that the 2-ADC model is identifiable. In this section we extend this result to demonstrate that
the m-ADC model is also identifiable. In other words, there is a one-to-one mapping of the model parameters (sensitivities, criteria) to
the response probabilities in the m-ADC model.

As before, we rewrite equations 6 with the notation for the more general notation for the probability density and cumulative

distribution functions (f; and F;, see Methods).

oo

p(Y =i §) = / I1 Fele+d(&) —d&) — ci + cx) file) dep(Y = 0] &) =TI FEile —dn&n)) 5
ci—d(&i) g i k

The demonstration proceeds in two steps. First we demonstrate the following with mathematical induction: if the m-ADC model
(for a task with m response alternatives) has a one-to-one mapping of the criteria to the response probabilties, then so does the (m+1)-
ADC model (for a task with (m + 1) alternatives). Next, we utilize monotonicity to show that there is a one-to-one mapping of the

perceptual sensitivities to the response probabilities for the m-ADC model.

One-to-one mapping of the m-ADC criteria to the response probabilities during catch trials

We consider the probabilities of response during catch trials. This is given by setting d(£;) = 0Vk in equation system 15:

pé = /OO H Fr(e —¢; +cx) fi(e) de

k ki
ie{0,...,m} (16)

where pfy = p(Y = i[ & [|d¢[l1 = 0).

Statement Given a set of response probabilities P} for an m-alternative model, and the ordered set of criteria C' = {¢; :
i € {0,...,m}} that produce these probabilities (according to the system of equations 16 then there is no alternate set of

criteria C* that produces the same probabilities.

Basis There is a one-to-one mapping from the set of criteria C' = {c¢1, co} to the response probabilities in a 2-alternative

model (m=2).

Inductive step Let there be a one-to-one mapping from the set of criteria to the response probabilities in an m-alternative
model, i.e., given a set of response probabilities pf) = Q°, there is one, and only one, set of m-ADC criteria C,,, = {¢; : i €
{0,...,m}} that produces these probabilities (from the system of equations 16). Then, given a set of response probabilities
pb = P¢ for an m+1-alternative model, and a set of criteria Cp,1 = {c¢; : j € {0,...,m + 1}} that produces these
probabilities there is no other set C;, , | that also produces the same probabilities, i.e., there is a one-to-one mapping from

the set of criteria to the response probabilities in an m+I-alternative model.

Proof of basis In a previous section we proved the one-to-one mapping of the criteria to the 2-ADC response probabilities during

catch trials (Appendix A.1, Supplemental Data). This constitutes the proof of the basis for m = 2.

Proof of inductive step The inductive step is proved, as before, in two stages:
The proof rests on the following lemmas, which are proved in Appendices A.4-A.6 (Supplemental Data).
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Lemma 4 Given a set of response probabilities pj = PJ,r € {0,...,m + 1}, and any set of criteria C' = {¢; : j €

{0,...,m + 1}} comprising an ordered set that produces these probabilities (according to equations 16). There is a one-

to-one correspondence between any choice criterion ¢; in C' and its complement set C} = {¢; : j € {0,...,m+1},j # i}

that excludes c;.

Lemma 5 Given a set of response probabilities P, € {1,...,m + 1} and the set of all sets of criteria {C* = {¢;* : j €

{0,...,m + 1}}} comprising ordered sets that produce these probabilties (according to equations 16). For any two sets

C" and C?, every pair of corresponding elements (c;*, ¢;%) obeys the same order relation, i.e., if any ¢;! = ¢;? then every

it Ze% i, €{0,...,m+1}i # j.

Lemma 6 Given a set of response probabilities P§ and the set of all sets of criteria {C* = {c;* : j € {0,...,m + 1}}}

comprising ordered sets that produce these probabilties (according to equations 16). For any two sets C' and C?, at

least one pair of corresponding elements (c;', ¢;?) differs in its order relation, i.e., if any ¢;' = ¢;? then at least one

it < i, i €{0,...,m+ 1}, # 5.

Simply put, Lemma 4 states that given set of false-alarm and correct rejection rates, fixing one choice criterion determines all of

the other choice criteria. The proof of Lemma 4 utilizes the induction hypothesis (see Appendix B.4, Supplemental Data). Lemma 5
states that if the choice criterion to one location were to increase (decrease), the choice criterion at every location has to also increase
(decrease) to maintain the false-alarm rate unchanged at each location. Lemma 6 states that if the choice criterion to one location
were to increase (decrease), the choice criterion at least at one location has to decrease (increase) to maintain the correct rejection rate
unchanged.

The sequence of arguments for the proof proceeds as follows:

(i) LetC = {c¢; : j € {0,...,m+1}} beaset of criteria that produce a specific value of pj = Pj. Let C" = {¢} : j € {0,...,m+1}}

be a different set that produces the same P¢.

(ii) By Lemma 4, ¢; # c;- V j. Without loss of generality, let ¢; > ¢}.
(iii) By Lemma 5, if ¢; > ¢}, then c; > ¢ V j,j # i.
(iv) By Lemma 6, if ¢; > ¢/, then at least one ¢; < c;» for some j # i.

The proof follows by contradiction. Thus, the set of criteria C' = {¢; : j € {0,...,m + 1}}, which produces mathcal P}
(according to equations 16) is unique. In other words, there is a one-to-one mapping from the set of criteria to the response probabilities
during catch trials (false-alarm rates and correct rejections).

One-to-one mapping of the m-ADC sensitivities to the response probabilities during stimulus trials

The proof rests on the following lemma (proved in Appendix B.7, Supplemental Data):

Lemma 7 The response probability p;(d(£y)) is a strictly monotonic function of d(&y).
The sequence of arguments proceeds as follows:

(i) By the task specification, no more than one stimulus is presented on a given trial. Thus, for a fixed set of criteria C, the response

probabilities p of equation system 15 are simply a function of their respective perceptual sensitivities d;.
(ii) From Lemma 7, the response probability p¢(d(&;)) is a strictly monotonic function of its respective d;, i € {1,..., M}.
(iii) Strict monotonicity implies a one-to-one mapping of the d(&;)-s to the respective pi-s.

This completes the proof. Note that the same arguments could be made with other sets of probabilities, such as the false-alarm
rates, pg , for reporting a stimulus at location j when a stimulus was presented at location ¢, which are also monotonic functions of d(&;)

(Appendix B.7, Supplemental Data).
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B Proof of lemmas on model identifiability

In this section, we demonstrate analytically various lemmas (employed in Appendix A) on model identifiablity.

B.1 Proof of Lemma 1: Monotonic variation of the probability of a NoGo response with choice
criteria in 2-ADC catch trials

Assertion: p(Y = 0/||X||; = 0) (or p3) is a monotonically increasing function of both c1 and cs. Specifically, p) = Fi(c1) Fa(ca).

Proof: We compute the probability of a NoGo response during catch trials. This happens when W falls below the criterion at both
locations (Y = 0,iff Uy < ¢; N ¥y < ¢3). Thus,

p(Y =0[X) =p(¥; < 1N Uy < c3) a7
Upon substitution of the structural model, and noting that the ¢; are independent, this gives:

p(Y =0[X) = pler <e1Ner <c)

pler < c1)plea < ¢2)
Fi(c1) Fa(c) (18)

Thus, the probability of a correct rejection in the 2-ADC model factors into the product of the 1-ADC correct-rejection probabilities.

Py = Fi(c1) Fa(ca) (19)
As the Fj-s are positive, and monotonically increasing functions of their arguments, p)) is a monotonically increasing function of
c1 and cs.
B.2 Proof of Lemma 2: Monotonic variation of the probabilities of Go responses with choice
criteria in 2-ADC catch trials

Assertion: p(Y = i[||X||1 = 0) (or p})) is a monotonically decreasing function of ¢; and a monotonically increasing function of c;.

Proof: We reproduce equation system 11 here:

o0

Py = Fyle+ ¢y —c1) file) de (20)

C1

Py = / Fi(e+c1—c2) fa(e) de 21)

2
With increasing ¢4, p(l) has to decrease because:
(i) The integrand (F»(e+ co —¢1), specifically) decreases because Fy is a monotonic function of its arguments (e 4+ c2 — ¢; decreases)
(i) The domain of integration (c; — co) decreases as c; increases (the integrand is never negative)

With increasing co, p} has to increase because the integrand increases (F» (e + c2 — c1), specifically), and the domain of integration is
unaffected by c. The (converse) effects of ¢; and ¢z on p? can be similarly argued.
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B.3 Proof of Lemma 3: Monotonic variation of response probabilities with perceptual sensitivi-
ties in 2-ADC stimulus trials
Assertion: p(Y = i|X; = 1) (or p}) and p(Y = i|X; = 1) (or p};) are both monotonic functions of d; and d;(i, j € {1,2}).

Proof: We reproduce part of equation system 10 here for reference.

p(Y = ’L|X) = / Fj(e + dez — dej — C; + Cj) fl(e) de (22)

Cri—dq'Xi

ijef{l,2}i#j

where we have dropped the subscript from e; (a variable of integration).

With increasing d;, p(Y = i|X; = 1) or p! has to increase because:
(i) The integrand (F)j(e + d; — ¢; + ¢;), specifically) increases because F} is a monotonic function of its arguments (d; increases)
(i) The domain of integration (¢; — d; — o) increases as d; decreases (the integrand is never negative)

With increasing d;, p(Y = i|X; = 1) or p}; has to decrease because:
(i) The integrand (Fj(e — d; — ¢; + ¢;), specifically) increases because F}; is a monotonic function of its arguments (-d; decreases)
(ii) The domain of integration is unaffected by d;.

This completes the proof.

B.4 Proof of Lemma 4: One-to-one correspondence of m-ADC choice criteria

Assertion: Given a set of response probabilities py = P§,r € {0,...,m + 1}, and a set of criteria C = {c; : j € {0,...,m + 1}}
that produces these probabilities (according to equation system 16). There is a one-to-one correspondence between any choice criterion

¢; and its complement set C] = {c; : j € {0,...,m+ 1}, j # i}.

Proof: The proof proceeds in two steps, first demonstrating the mapping ¢ : C} — c¢;, and then its inverse (! : ¢; — C/.
First, consider the probability p) = P§. A given choice criterion ¢;,i € {0,...,m+ 1} can be expressed in terms of the remaining

criteria in the following way.

m—+1

Po =[] File)) (23)
j=1
’ 7)()

C; = F»_l( 0 ) (24)

A +1
H;‘nzl,j;éi Fj(c;)

where Fj is invertible, being a cumulative distribution function. Given a particular p) = P, and a set of m criteria {c; : j €
{0,...,m+ 1}, j # i} the remaining criterion ¢; is uniquely determined, thus demonstrating the mapping ¢ : C} — ¢;.

Next, consider the set of probabilities 733. From system 16, these can be written as:

oo m+1
Pi— / [[ File—ci+aen) file) de (25)
Ci =1,k
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With the variable substitution e’ = e — ¢;, and following some algebra, this set of equations can be rewritten as:

m+1

pgz/o [I File+cr) file+c) de (26)

k=1,k#i

Let C be a set of criteria {c; : j € {0,...,m + 1}} that produces the probabilities on the left hand side of this equation. Let us
assume that one of the criteria in this set, say c,,+1 (without loss of generality) has a known value.
Define the following functions (for ¢ € {0,...,m}).

Fﬂ(@ Cmy1) = [Fm+1(e + C7n+1)]E 27)
Gi(e+ ci;emr1) = File +¢i) Flu(e;cmy1) (28)

We note that both F, and G; are parameterized by c,,41. F},, the m-th root of a cumulative distribution function, and G, the
product of F), and F; are both monotonic, continuous functions, and it is easy to see that lim G; = 0; lim G; = 1. Thus, G; is
— 00

e— e——+oo
itself a cumulative distribution function with the following probability density:

oG

gi(e + ¢4 Cm—i—l) = % (29)
OF,(e;cm
= Fi(e + ¢) % + F(e;eme1) file+¢) (30)
Now, let us consider the following system of equations:
Q' =/ H Gr(e + ks em1) gi(e + ciiemyn) de G

0 p=1k#i

With some algebra, we can show that Q* = P¢ + (P /m).

By the induction hypothesis for m-equations, given a set of ¢'-s, and the parameter c,, 1, all of the c;-s are uniquely determined.
Because c,,,1 was an arbitrarily chosen criterion, the result can be generalized as follows: given a set of Q°-s, and any choice criterion
¢;, all of the other choice criteria in C] = {¢; : j € {0,...,m + 1}, j # i}-s are uniquely determined, thus demonstrating the inverse
mapping ¢! : ¢; — CL.

Thus, for a given set of response probabilities Py and a set of criteria C' that produces these probabilities, we have shown a

one-to-one correspondence among any one choice criterion, and the remaining criteria in the set ¢; <> CY.

B.5 Proof of Lemma 5: Direct variation among all criteria in the m-ADC model

Assertion: Given a set of response probabilities P§,i € {1,...,m+ 1} and the set of all sets of criteria {C* = {c;* : j € {0,...,m+
1}}} comprising ordered sets that produce these probabilties (according to equations 16). For any two sets of criteria C* and C?, every

pair of corresponding elements (cjl, cj2) obeys the same order relation, i.e., if any c;' = ¢;? then every cjl z ch, i,7€4{0,...,m—+1}.

Proof: Given set of response probabilities P. Let C = {¢;! : j € {0,...,m + 1}} be a set of criteria the produce these probabilities,
and let C? = {c;? : j € {0,...,m + 1}} be another, distinct (not identical) set that also produces the same probabilities. Also let all
choice criteria from set C'!, except that corresponding to choice i (c;), be greater (or lesser) in value than the corresponding criteria in set
C?. We demonstrate that in this case, the criterion c; in set C* must also be greater (or lesser) in value than the corresponding criterion
in set C2.
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The P} are given by (refer equation 26):

oo m+1
Pl :/ H Fj(e+¢;') file +¢;t) de (32)
O j=1,5#i
oo m+1
O j=1,j#i
Note that if ¢;! = ¢;?,
m—+1 m—+1
I Ee+aghz JI Elete?) ve 53
j=1,j#i Jj=1,5#i

as the F;-s are monotonically increasing functions of their arguments. Hence, for the right hand sides of equation 33 to be equal
to each other (and each equal to 735) ¢t 2 c;2. The latter result is confirmed by inspecting the integrands of equation 33, and is also

evident from the following lemma.

Lemma 8 The response probability pj) is a strictly (monotonically) increasing function of ¢; and a strictly (monotonic)
decreasing function of ¢;.

The lemma is proved in a subsequent section. Thus, if every ¢;' = ¢;2,j € {0,...m+1},j # i then, ¢;* = ¢;°. However, we have
just shown that there is a one-to-one correspondence between each ¢; and its complement set C} = {¢; : j € {0,...,m + 1}, # i}.
Thus, the converse statement must also hold: that is, if ¢;! = ¢;2, then every ¢;! = ¢;2,j € {0,...m},j € {0,...,m+1},j # i. This

completes the proof.

B.6 Proof of Lemma 6: Inverse variation among at least a pair of criteria in the m-ADC model

Assertion: Given a set of response probabilities P{ and the set of all sets of criteria {C* = {c;* : j € {0,...,m + 1}}} comprising
ordered sets that produce these probabilties (according to equations 16). For any two sets C* and C?, at least one pair of corresponding

elements (c;', c;?) differs in its order relation, i.e., if any c;* Z ¢;? then at least one c;* < ¢;%,i,7 € {0,...,m+ 1},i # j.

Proof: Given set of response probabilities Pi. Let C!' = {¢;' : j € {0,...,m+ 1}} and C* = {¢;® : j € {0,...,m + 1}} be
distinct sets of criteria that produce these probabilities (given by equation system 16). Also let any one choice criterion from set C*,
corresponding to choice i (¢;), be greater in value than the corresponding criterion in set C2 i.e. ¢;! > ¢;2.

We prove the result by contradiction. Assume that none of the other criteria in set C' is lesser than the corresponding criteria in set
C?. In other words, every ¢;* > ¢;%,7 € {0,...m + 1}.

Given the probability of a NoGo response during catch trials, this can be written as:

m—+1

m—+1
Py =[] File;") = 11 Fi(¢”) 34)
j=1 j=1

The functions F; are monotonic functions of their arguments. If every ¢;! > ¢;? equality of the right hand side expressions holds

L' > ¢;2, the assumption

only if ¢;' = ¢;2, which violates the assumption that C* and C? are non-identical sets. Thus, if any one ¢;
that none of the other criteria in set C'! is lesser than the corresponding criteria in set C leads to a contradiction. Hence, if any
cit > ¢;%,i € {0,...,m + 1} then at least one criterion in set C has to be lesser than the corresponding criterion in set Cs.

It is easy to see that the converse is also true, i.e. if any ¢;! < ¢;2,i € {0,...,m + 1} then at least one criterion in set C; has to be

greater than the corresponding criterion in set Co. This completes the proof.
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B.7 Proof of Lemma 7: Monotonic variation of m-ADC response probabilities with perceptual
sensitivity

Assertion: The response probability pé» is a strictly monotonic (increasing) function of d(;) and a strictly monotonic (decreasing)
function of d(¢;).

Proof: We reproduce the system of equations 15 for reference:

oo

p(Y =il €) :/ [I File+d€) — d&) —ci + ) file) de (35)

ci=d(&) p—1 ki

Consider the probability of response to location ¢ when the stimulus is presented at the same location (d(§x) = 0V k # 9).

m

pi = / [T Fule+d(€) —ci+ex) file) de (36)
ci=d(&i) p—1 ki

With increasing d(&;), the response probability p! has to increase, as the integrand increases with d(&;) (each Fy is a monotonically
increasing function of its argument), and the integration (positive integrand) occurs over a larger domain (¢; — d(&;) decreases).

Next, consider the probability of response to location ¢ when the stimulus is presented at location j, j # i (d(&) =0V k # j).

m

pz = /:O H Fi(e —c¢; +cx)Fj(e —d(&) — ci +¢;) fi(e) de 37

L k=1k#i,j

Again, it is apparent that with increasing d(¢;) the response probability p} has to decrease, as the integrand (Fj(e — d(&;) — ¢; + ¢;),
specifically) decreases with increasing d(&;) (the domain of integration is unaffected by d(&;)).

This completes the proof.
B.8 Proof of Lemma 8: Monotonic variation of m-ADC response probabilities with choice criteria
Assertion: The response probability pf is a strictly monotonic (decreasing) function of ¢; and a strictly monotonic (increasing) function

of Cj.

Proof: Consider the probability of response to location ¢ when the no stimulus is presented (X = OVk).

Py = / H Fy(e —ci +cx) fi(e) de (38)

G k=1,k#i

With increasing c;, the response probability pf has to decrease as the integrand decreases with ¢; (each F}, a monotonically decreases
with ¢;), and the integration (positive integrand) occurs over a smaller domain. Similarly, with increasing c;, p, has to increase as the
integrand (F;(e — ¢; + ¢;), specifically) increases with c;.

This completes the proof.
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C Concavity of the log-likelihood function

In this section, we identify key challenges with demonstrating the concavity of the log-likelihood function. While there are many
ways to demonstrate concavity analytically, perhaps the most conceptually straightforward is the second derivative test.

We consider the multinomial log-likelihood function for the 2-ADC model.

2 2
L= Oilog(p;p}) +C (39)

i=0 j=0

where (9; represents the observed number of responses to location 7 for the stimulus event j, p; represents the prior probability
of stimulus event j and p; denotes the probability of response to location ¢ for the stimulus event j (a conditional probability), and C
represents an additive constant associated with the multinomial coefficient (g]), where N is the total number of observations.

The prior probability of each stimulus event, p;, is generally constant across an experimental session. With this assumption, the p;
terms can be factored out of £, as they contribute only an additive term to £ without affecting its shape. Thus, to prove convexity, let us

consider a simplified function that excludes all of the additive terms:
2 2
L= 0ilog(p)) (40)
i=0 j=0

In order to prove concavity of this function, we need to show that its Hessian is negative semidefinite (non-positive eigenvalues).

Note that £’ is a function of the four 2-ADC model parameters (dy, ds, ¢1, ¢2). Thus, its Hessian is given by:

oL’ oL’ oL’ oL’
ad? ddy 0d;  9dy Dy 9dy dea
oL’ o2’ oL’ oL’
i ddz dd ad2 dd3 0 dd3 &
= |00 OB L0 0dydc (41)
6c1 8d1 Bcl adz 6(;% 6c1 862
o’c’ o’c’ o’L’ o’L’
Oco Ody Ocg Odo Oco Ocy 80%
2 !
Each term of the Hessian may be represented as 2090, where 01 and 6, represent a two of the four parameters (not necessarily
1002
distinct). With some algebra, this generic term evaluates to:
2 2 2 7
oL Yo 0 (19p;
891 802 i=0 j=0 J 301 p;- 692
9 9 , o
3 oi L (9%, 1 0pop; “2)
i=0 j=0 J p; 391 892 p§ 391 802

These represent 10 distinct terms in the Hessian, since it is a symmetric matrix. However, certain simplifications are possible. For

example, we can show that:

sz- apé-
P ik Xk Der (43)

where 0, is the Kronecker delta function, ¢, j € {0,1,2} and k& € {1,2}. In other words, the partial derivative of the response
probabilities with respect to the sensitivities, are numerically equal to the partial derivatives with respect to the corresponding criteria
(demonstrated analytically, below). This result is not surprising, per se, given that each response probability, p;- (given by equation 10)

is invariant on the surface ¢; — d; X; = const and ¢; — d; X; = const, i.e., increasing c¢; or decreasing d; by the same value (or vice

S-10



Sridharan, Steinmetz, Moore, & Knudsen

versa) causes pl to change by the same amount (for a graphical intuition, see Figure 5C).
Based on these relations, we can define the second partial derivatives of the response probabilities as:

5?2 pi‘ a2pz:
I = 50 X J 44
ddpad; — M dey o @
02t o2t
pj _ 7§Jka p]
ad;. Oc; Jcy, Oy
2pi
From equations 42, 43 and 44, the Hessian is populated by second partial derivatives, of the form 3 5‘J , as well as products of
C1 0Co
op’ opi
the first partial derivatives, of the form a—pjg%. The product with the Kronecker delta functions and the X;-s renders some of these
C1
terms zero.

We have previously shown (Appendix B.1-B.2) that the p§ in the 2-ADC model are monotonic functions of the criteria. Thus, the
9p;
8Ck

partial derivatives (e.g., Figure S1A); these appear to vary with the actual value of ¢; and cs.

first partial derivatives are either always positive or negative for a given 4, j, k. No such generalization can be made on the second

We analytically evaluate the first order partial derivatives of pé with respect to the four parameters (dy, do, c1, ¢2), to verify if further
simplification of the Hessian (equation 42) may be achieved.

We reproduce part of equation system 10 for the 2-ADC task here for reference.

oo

p(Y:l|X) :/ Fj(€+le1 7dej 7Ci+6j) fz(e) de (45)
Cifdixi

i,je{L2}i#)

We rewrite the above equations with the following transformation ¢’ = e — ¢; + d; X;; with this transformation, the criterion and
sensitivity are eliminated from the limits of integration. The system may then be rewritten as:

p(Y =iX) = / Fj(e' +¢j — d;X;) file' + ¢ — d; X;) de’ (46)
0
i,je{L,2}i#)
Computing the partial derivative of system 46 with respect to d; (and replacing the dummy variable of integration e’ with e):

op(Y =i|X) 0

(/00 Fi(e+cj — d; X;) file + ¢ — di X;) de)
0

<9
:/0 o (File+cj—diX;) file+ci = d; X)) de “n

:/ Fj(e—|—cj—dej)< f(6+acd )> de
0 T
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Integrating by parts, and noting that %(dek) = 0;, X}, we have:

(Y = iX)
od;

OF(e+c; —d; X;)]™
ad; .

oF;(e +¢; — d; X;
/fj (e+c¢; — d;jX;) ( dd. )de

= —Fj(¢; — d; X;) filei — diX;) (= Xi)

—/Ooo file+c; —d;X;) file+ ¢ — d;i X;)(—X;) de
= Xi {Fj(¢; — d; X;) fi(ei — diX3)

+/0°o file ¢ —d;X;) file +¢; — d; X;) de}

= [Fj(e + ¢ —d;X;)

(48)

Computing the partial derivative of system 46 with respect to d;:

8p(Y=i\X)_/°° OFj(et¢ —d;jX5)\ A X,
ad; ~Jo ad; fleramdt)d

= / file+cj —d; X;)(=X;) file + ¢; — di X;) de (49)
0
=—X; / file+c; —d;X;)fi(e +ci — di X;) de
0

Similarly, computing the partial derivative of system 46 with respect to ¢; and c; (noting that 57~ (ck) = 0ik):

p(Tl') = —(F(¢j = d;j X;) filei — diXs)

o0
+/ fj(e—f'Cj —dej) fi(e—i—ci _dez) de) (50)
0 = i|X)
p(aiﬂ / f] €—|-CJ dX)fz( +Cl_diXZ) de (51)
From these equations, it is clear that:

op B Xap%( op _ _x. op

ad; ' g ad; 7 oy

(52)

where we have used the notation p% for p(Y = i|X). These equations are equivalent to equations 43, above.

These first partial derivatives do not appear to permit further simplification. Computing the second partial derivatives from equations
48 and 49 and, subsequently, demonstrating that the eigenvalues of the Hessian (equation 42) are non-positive, appears to require con-
siderable further algebraic manipulation. These results highlight the challenges with demonstrating the concavity of the log-likelihood
function.
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D Proof of results on model optimality

In this section, we derive various results regarding optimal decision surfaces for the m-ADC model.

D.1 Optimal decision surfaces are hyperplanes of constant posterior odds ratio

We define the following relations (to be used in our derivation) for a stimulus detection task (e.g.,Figure 1A):

MN=cF -c? (53)
] _ Nm(\I,|Xz = 1)
Aip(P) = &ﬁz‘o (55)
Po

where CF represents the cost of responding to location & when a stimulus occurred at location /; C} represents the cost of giving
a NoGo response, when a stimulus occurred at location [; Af represents the cost of responding to location k relative to giving a NoGo
response, when a stimulus occurred at location [; £;0(®) is the likelihood ratio corresponding to a stimulus at location ¢ relative to no
stimulus, and A;o () is the posterior odds ratio given by multiplying the likelihood ratio by the prior odds ratio of a stimulus at location
i relative to no stimulus: p;/py = p(X; = 1)/p(X; = 0V i). We note that, for variables C' and A, non-zero subscripts refer to the
location of stimulus, and non-zero superscripts to the location of response. A subscript of zero (e.g., C¥) denotes the no-stimulus event
(catch trial), whereas a superscript of zero (e.g., C,g) denotes a NoGo response.

The general form of optimal decision surfaces for maximizing average utility (or minimizing average risk), for additive signals and
noise, obey the following relations (Middleton & Meter, 1955, equations 16-17):

Li(®) = L, (®); Li(¥) =0 Vkle{l,...,m}hk#1

where:

Li =M+ ) M) (56)
i=1
These hypersurfaces enclose m + 1 distinct decision domains corresponding to each of the m response alternatives and the NoGo
response.

We can rewrite these equations as:

A+ D A Ao() = A+ Y NAio(®) k#1 (57)
=1 =1

A+ M A(®) =0 (58)
=1

Substituting for the relative costs, A, in terms of the absolute costs, C, yields:

C5 —C3+ > _(CF = CP)Nio(®) = Cy — Cf + Y (Cf = CP)Mio(®) k #1 (59)
=1 =1
Cs —Cg+ > _(CF=CP)Ni(®) =0 (60)
=1
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These equations can be further simplified as:

Co+ > CfAio(®) = Ci+ Y ClAip(®) 61)
=1 =1

C5+Y  CfAi(®) = Ci+ Y CPAo(P) (62)
=1 =1

Our assumption regarding costs (Methods) can be expressed analytically as:
CF = CiVj, kL €{0,....mpk £ 51 #] (63)

Incorporating this assumption, equation 61 simplifies to:

(Ck = CL)Ako(®) = (C] — CF ) Ao () (64)
Awo(®)  Cf—CF
Ao(®) ~ CF—cT 65)
ARN(Y) = By (66)

where Ay (P) = [/\\1;(?((“11:)) =B jX[” ((“Il',ll);{f;l)) is the posterior odds ratio of a stimulus at location k relative to a stimulus at location 1
and B, = (C; = CF)/(C = Cy).

Incorporating the assumption from equation 63, equation 62 simplifies to:

OO + Ok Ako - OO + O Ako (67)
Cs —Co

Mo = s (68)

Ao = Bro (69)

Thus, optimal decision surfaces (equations 66 and 69) are the surfaces (hyperplanes) of constant posterior odds ratio (isosurfaces)
for each pair of stimulus events (Ay;) and for each stimulus vs. the no-stimulus event (Ago). The values of the constants (3;; or 3;0)
that define the optimal decision surfaces for reporting a stimulus at a location k& vs. one at another location [, depend on the relative
costs (or benefits) of correctly reporting a stimulus (hit) at that location, %k (or ), vs. incorrectly reporting (misidentification) the other
location [ (or k).

D.2 Optimal decision surfaces intersect at a point

Consider the optimal decision surfaces for detecting a stimulus at location ¢ or location j vs. no stimulus. These are given by:

i d7
Wid; = log B — log 2 4 &
po 2
Urd; = log 3, 710g7ﬁ+d—72
7 70 po 2

where W7 and W7 represent optimal values of ¥; and ¥; specified by equation 7.
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Subtracting the two equations yields:

2

. . i p; , di 4
Vrd; — Uid; =log B, —log B,y — log — + log — + — — —
id; g Bio — log B & o &0 5
Di d?_dz

2
@—logf-&-

= log _ (70)
Bijo pj 2

The ratio of 3-s term (first term on the right-hand-side of equation 70) can be expanded as:

Bio _ (08 - 03) CJJ' — CJ? (71)
B \Ci=C7)\Ch-C;
ci=ct )\ -3

From equation 63, Cj = CJ, so that (C§ — C{)/(C§ — C3) = 1. In addition, from equation 63, C9 = C? and C? = Cy. Thus,
(C]=CP)/(Ci=CY) = (C] = C)/(C;-C)) =B

Thus, equation 70 becomes:

ij*

. 42— d?
Wid; — Wid; =log B, —log Lt 4 ~L_"J
[t 7% g (%) 2 . 2

bj

(73)

Notice that the right-hand-side of this equation is identical with the right-hand-side of equation 8. Thus, these optimal values of
W7 and U7 for detecting a stimulus at location ¢ or location j, respectively, in noise (equation 7) also lie on the optimal surfaces for

reporting a stimulus at location ¢ versus a stimulus at location j (equation 8). This completes the proof demonstrating that optimal
decision surfaces defined by equation 7 and 8 intersect at a point.
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E Model for a discrimination task with a NoGo response

In this section, we derive the model equations for two-alternative discrimination task that incorporates a NoGo response.

In the conventional 2-AFC discrimination task, the observer indicates, for example, how a test (target) stimulus differs from
a standard stimulus (e.g., brighter versus dimmer, longer versus shorter, clockwise versus counterclockwise direction of rotation or
movement).

On the other hand, in a ternary choice 2-ADC discrimination task, the observer must, in addition, indicate if she/he perceives the
target stimulus to be the same as the standard by giving a NoGo response. For example, in a 2-ADC orientation discrimination task,
the observer must not only indicate whether a target stimulus differs in orientation from a standard, with a Go/NoGo response, but must
also indicate the direction of the difference as clockwise or counterclockwise (from the standard), with different Go responses.

We describe the 2-ADC discrimination model based on the length discrimination task of Garcia-Pérez and Alcald-Quintana (2011a)
(see main text for description), although, the model is generally applicable to other discrimination tasks (like the orientation discrimina-
tion task just described) as well.

In this model, independent decision variables ¥ 4 and ¥ g encode sensory evidence for the stimulus above and the stimulus below,
respectively. In the “L-configuration” the stimulus above is the test (vertical) stimulus, and the stimulus below is the standard (hori-
zontal). In the “inverted-L” configuration, the stimulus above is the standard (horizontal) and the stimulus below is the test (vertical)
stimulus.

Just as in the conventional 2-AFC design, the observer reports the longer stimulus (above or below) by comparing the perceived
lengths of each (relative values of ¥ 4 — and W p; biases in this decision are captured by the respective choice criteria (relative values of
ca and cp). The key exception to this rule is that the observer gives a NoGo response if the perceived length of both stimuli are within
a certain range of the point of subjective equality (gray region defined by the criteria c4 and cp in Figure 7A).

Thus, the decision rule for the 2-ADC (discrimination) model is:

Y=1if (TV4<—-cg N \I/A—CA>\I/B—CB)U

Y

(
(—CBS\I/ASCA n \I/B<—CA) U (\I/A>CA N \I/A—CA>\I/B—CB>
2 if (\I’B<—CA n \I/B—CB>\I’A—CA)U

(

7CA§\I/B§CBﬂ\I/A<703)U(\I/B>CBﬁ\I/chB>\I/Ach) (74)

Y=0if —cg<V¥y<cy N —c4<V¥p<cp

where the designations Y = 0, 1, 2 correspond to the NoGo, A>B (above > below) and B>A (below > above) responses, respectively,
in Figure 7A. Such a decision rule implies that observers have internalized the point of subjective equality of the test stimulus to the
standard, a plausible assumption when the standard stimulus remains fixed throughout the experiment, and is well-known to the observers
beforehand (the length of the standard stimulus was fixed at 104 pixels in this task, and the authors, who were also the observers, were
presumably familiar with the standard stimulus).

In this model, the psychophysical function (perceived length) is a linear function of stimulus strength (physical length). Thus, the
sensitivity (d.) is linearly related to the physical length (x) of the stimulus as: d,(x) = S.x, where z = {s, t} represent, respectively
the standard (horizontal) and test (vertical) stimuli. The point of subjective equality (PSE, origin of the coordinate axes), is the physical
length of the test stimulus at which its perceived length becomes equal to that of the standard stimulus. Thus, ds(z,) = di(PSE),
where z is the length of the standard stimulus (104 pixels). Hence, Ssxs = 8t PSE or PSE = Ssxs/B:.

The structural model is conceptually identical with that of the 2-ADC detection model.

Uy =d(a)+ea Up=d(&g) X +¢5B (75)
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where d(€4) and d(£p) represent the difference between the perceived length of the stimulus above and below, respectively, from
the perceived length of the standard (ds(x5)) or, equivalently, at the point of subjective equality (d;(PSE)). Thus, when the (vertical)
test stimulus is presented above the (horizontal) standard (L configuration), {4 = x4, = s, d(€a) = di(xy) — di(PSE) =
di(xy) — ds(xs) and d(€) = ds(xs) — ds(xs) = 0 (because the horizontal/standard is always presented at its standard length).
Similarly, when the (vertical) test stimulus is presented below the (horizontal) standard (inverted-L configuration), £4 = x5,&p = x4,
d(€a) =0,and d({p) = di(z) — ds(xs). For conciseness, we introduce the notation: Ad = dy(z;) — ds(xs).

The model may be described, equivalently, as follows: The joint distribution of ¥ 4 and U 5 are represented by a bivariate Gaussian
random variable ¥ = [U 4, ¥ 5] with mean Ad and identity covariance matrix. The magnitude of Ad varies with the length of the test
stimulus, z;, as |Ad| = Ad; the change occurs along the x-axis when the the test stimulus is presented above the standard (L), or along
the y-axis, when the test stimulus is presented below the standard (inverted-L). Thus, Ad = 0 when z; = PSE.

The response probabilities in this task may be computed by inspection of Figure 7A. For example, the probability of the response
Y = 1 (A>B) is the integral of the distribution of ¥ over the red region: the latter is all of the region below the oblique line V5 — ¥ 4 =
cp — c4, except for the area overlapping the NoGo response (gray) region. Similarly, the probability of the response Y = 2 (B>A) is
the integral over the blue region, which is all of the region above the oblique line, except for the area overlapping the NoGo response
(gray) region. The probability of a NoGo response (Y = 0) is simply the integral over the gray (rectangular) region.

Watcp—ca Wa+cp—ca
p(Y =1]Ad) = / / o(¥; Ad) AV 4dT 5 — / o(T; Ad) AV 4dT 5

7CB

p(Y = 2|Ad) = / / o(T; Ad) AU 4dV 5 — / o(T; Ad) dU 4dT 5 (76)
Wa+cp—ca —cp JWa+cp—ca

p(Y =0|Ad) = / / o(U; Ad) AV 4dT 5 (77)

where we have used the notation ¢ to represent the bivariate normal distribution of the decision variable W.

These equations may be readily modified for the 2-ADCX task, which incorporates an interaction among ¥ 4 and ¥ 5.

In this case, the mean of ¥ varies with the length of the test stimulus as: Adx = [Ad,n Ad], when the test stimulus is above the
standard (L configuration) or = [pAd, Ad] when the test stimulus is below the standard (inverted-L configuration), where, as before
Ad = |Ad| = Bixs — Psxs, and 7 is the parameter that captures the interaction. 7 is numerically equal to arctan(«), a being the angle
in the graphical illustration in Figure 7C, and reported in Table 1. Incorporating this value of Adx into equations 76 gives the response
probabilities in the 2-ADCX model.

There is considerable scope for future work, including extending the model to the multialternative case, and demonstrating optimal-
ity and identifiability of the parameters. In addition, the assumption regarding the subjects internalizing the point of subjective equality
works well for discrimination tasks with a well-known, fixed standard (as demonstrated by model fits), but would need to be amended

for more general tasks involving roving designs with interleaved standards of different strengths.
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F The m-AFC model with bias as a special case of the m-ADC model

In this section, we demonstrate that the m-AFC model with bias is a special case of the m-ADC model.

In the m-ADC model, if the decision variable never falls below the criterion at any location, the observer never provides a NoGo
response. This can be achieved by setting the criteria to very low (large negative) values. In this case the m-ADC model is identical with
an m-AFC model.

We denote as b;, the difference ¢,,, — ¢;, which we term the bias for location i relative to location m; by this definition, b,, = 0.

Introducing these terms into equation system 15:

v =ie) = [T Fuledi6) —di6) + b~ bo) file) de 78)
ci—d(&i) i

Formally, the m-ADC model reduces to the m-AFC model as the criteria are reduced to very low values (¢; = —o0), while keeping

b; constant. Applying this limit to the above equation:

oo

s =ilg) = [ T] Fule+dl6) — dige) + b~ bu) file) de (19)

0 K kti

and p(Y = 0|€) = limg, oo Fi(ck — d(&x)) = 0, or, the probability of a NoGo response is zero.

These equations describe a recently developed m-AFC model formulation that incorporates bias (DeCarlo, 2012). Thus, the m-
ADC model is a more general form of the m-AFC model.

Notice that such a model describes the behavior of an ideal observer (one who seeks to maximize success), when no catch trials
are incorporated into the task design. In this case, the prior probability of a catch trial is zero (pg = 0) and according to equation 9,
lim,, 0 Ajo — —o0, so that ¢; — —oo, whereas A;;, which does not depend on py, remains unchanged, as do the differences ¢; — ¢;
(and, hence, the b;-s). Thus, an ideal observer’s behavior switches naturally from an m-ADC model to an m-AFC model when catch
trials are excluded from the task design.
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Supplemental Data: Figures and Tables
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Figure S1: Effect of varying sensitivities and criteria on 2-ADC response probabilities (A) Variation of the probability of response at location 1 with the
criterion at each location (for constant sensitivities, Table S2A). The probability of response to location 1, for a stimulus presented at location 1, decreases
monotonically with an increasing choice criterion (c;) at location 1 (solid red line) and increases monotonically with an increasing choice criterion (c2)
at location 2 (dashed red line). The same monotonic trends are observed when a stimulus is presented at location 2 (blue curves). (B) Variation of
the probability of response at location 1 with the sensitivity at each location (for constant criteria, Table S2A). The probability of response to location 1
increases monotonically with increasing sensitivity (d;) to a stimulus at location 1 (red), and decreases monotonically with increasing sensitivity (d2) to a
stimulus at location 2 (blue).
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Figure S2: Effect of varying psychophysical parameters and criteria on 2-ADC psychometric functions (A) (Leff) Psychometric functions p(§) at location 1
as a function of stimulus contrast ¢ at location 1. The family of curves (light gray to black) correspond to increasing values of asymptotic sensitivity dp,aqa
at location 1. (Righr) Same as in left panel, but psychometric functions at location 2 as a function of stimulus contrast at location 1. (Inset) Psychophysical
functions (d(&)) for increasing dma2 (Scale parameter). (B) Same as in (A), but psychometric functions for increasing values of half-max contrast £50
(shift parameter). (C) Same as in (A), but psychometric functions for increasing values of the exponent n (slope parameter). (D) Same as in (A), but
psychometric functions for increasing values of the criterion at location 1, ¢;1. (E) Same as in (A), but psychometric functions for increasing values of the
criterion at location 2, ca.
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Figure S3: Bayesian estimation of model parameters with the Markov-Chain Monte Carlo algorithm (A-B) Markov-chain Monte-Carlo (MCMC, Metropolis
sampling) algorithm for estimating perceptual sensitivity (A) and choice criterion (B) at each location from simulated response counts in the two-alternative
detection task (Table S2B). For various initial guesses (colored diamonds-s), the Markov chain converged reliably to identical values of sensitivity and
criterion at each location (black circles). Colored lines: Markov chains during MCMC runs for different initial guesses. (C) Evolution of the values of
sensitivity (upper panel) or criterion (lower panel) at each location during a particular MCMC run (magenta data in panels C-D) for location 1 (red) or
location 2 (blue). Gray bar: burn-in period (1000 iterations). (D) The chi-squared error function (upper panel) decreased steadily, and the log-likelihood
increased (lower panel) over successive iterations of the MCMC run. (E) Stationary (posterior) distributions (circles) of the sensitivity (left panel) and
criterion (right panel) values at each location for the MCMC run (panel E). These distributions were used to construct standard errors and 95% credible
intervals for the parameters (Table S2C). Red data: location 1; blue data: location 2. Lines: Gaussian fits to each distribution.
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Figure S4: Fitting a 2-ADC model with a symmetric decision rule (A) Schematic 2-ADC model, with a symmetric decision rule, that does not incorporate
bias (c1 = c2 = ¢). (B) Maximum likelihood estimates of the psychophysical function of stimulus contrast, d(¢). Black curve: Psychophysical function
estimated with a 2-ADC model that incorporated bias. Red and blue dashed curves: Psychophysical functions at locations 1 and 2, respectively, estimated
with a model that did not incorporate bias.



Table S1. Stimulus-response contingency table for 2-AFC and 2-ADC tasks.

A. 2x2 stimulus-response contingency table for a 2-AFC (Yes/No) task.

(No stimulus)

Response
Go re[i'ﬁfi}se @ NoGo response
Stimulus
o Hit (HR) Miss (MR)
Catch

False-alarm (FA)

Correct rejection
(CR)

B. 3x3 stimulus-response contingency table for a 2-ADC task.

Response
Go response @ Go response @ NoGo response
Loc 1 Loc 2
Stimulus

Stimulus Hit (HR,) Misidentification Miss (MR))

@ Loc 1 (incorrect)

Stimulus Misidentification Hit (HR,) Miss (MR,)

@ Loc?2 (incorrect)

Catch False-alarm (FA,) False-alarm (FA,) Correct rejection (CR)
(No stimulus)

In 2-AFC (Yes/No) tasks there is only one false-alarm: a Go response during catch trials (FA). In addition to
this, another type of false-alarm response can occur in 2-ADC tasks: a Go response at a location when a
stimulus was presented at the opposite location (gray shaded cells).




Table S2. Simulated parameter recovery with MLE and MCMC.

A. Parameters used in the simulation.

Parameter Location 1 Location 2
sensitivity d, =10 d, =10
criterion ¢, =-025 ¢, =0.75

noise g =N(0,1) g, =N(0,1)

stimulus prior probability p;=0.25 p,=0.25

B. Simulated contingency table of response counts (N = 4000 trials from 20 simulated runs).

Response
Go response @ Go response @ NoGo response
Loc 1 Loc 2
Stimulus
Stimulus
871 66 63
@ Loc 1
Stimulus
422 414 164
@ Loc 2
Catch
1122 263 615
(No stimulus)

C. Sensitivities and criteria recovered with maximum likelihood (MLE) and Bayesian (Markov Chain Monte

Carlo) estimation procedures.

Parameter MLE (mean * SE) Bayesian (mean * SE) 95% CI
d,=1.07%0.06 d,=107£0.08 d;:098-1.16
sensitivity
d,=0.9910.06 d,=0.98+0.08 d,:0.89-1.08
¢;=-0.2710.03 ¢;=-0.2710.03 ¢;:-0.30 - -0.21
criterion
c,=0.75+£0.04 ¢, =0.75+£0.05 c,:0.67 - 0.81

SE: standard error, CI: credible intervals



Table S3. Maximum likelihood (ML) estimates of the psychometric function with and without

accounting for bias.

A. Parameters used in the simulation of a 2-ADC model with bias (c,#c,).

Parameter Location 1 Location 2
dpax = 2.5 dpax =2.5
sensitivity d,E&) n=20 dy&, n=20
Cso=0.35 cso=0.35
criterion ¢, =0.1 c,=0.7
noise g, =N(0,1) g, =N(0,1)
stimulus prior probability p;=0.25 p,=0.25

B. ML estimates of 2-ADC psychometric parameters with and without accounting for bias.

Parameter MLE with bias MLE without bias
aramete (mean * SE) (mean * SE)
dpax =2.48 £0.03 d, =3.031£0.05
d,E&)p n=2.01+005 d,&,) n=1.69+0.04
cso =0.34 £0.006 cso=0.33£0.008

sensitivity
dpax =2.49£0.03 dpax =2.4910.03
d,(E,) n=2.03+£0.04 d,¢&, n=295+0.07
cso =0.35£0.005 cso =0.38 £0.004
¢, =0.10 £0.002 ¢; =0.35+£0.002

criterion

¢, =0.71 £0.003

¢, =0.35£0.002




