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Supplemental Data: Appendix
A Demonstration of model identifiability

A.1 Identifiability of of 2-ADC model

In this section, we demonstrate that there is a one-to-one mapping from the set of parameters {di, ci}, i ∈ {1, 2} to the set of
response probabilities of the 2-ADC model. As these proofs do not assume a specific form of the decision variable distribution (e.g.,
Gaussian), we use a slightly different notation for these distributions. Thus, the probability density and the cumulative distribution of
the decision variable distribution at location i under noise (catch trials) are given by fi and Fi, respectively (Methods). Thus, equation
system 3 can be rewritten as:

p(Y = 1|X) =

∫ ∞
c1−d1X1

F2(e+ d1X1 − d2X2 − (c1 − c2)) f1(e) de

p(Y = 2|X) =

∫ ∞
c2−d2X2

F1(e+ d2X2 − d1X1 − (c2 − c1)) f2(e) de (10)

p(Y = 0|X) = F1(c1 − d1X1) F2(c2 − d2X2)

The proof proceeds in two steps. In the first step, we demonstrate the one-to-one mapping of the choice criteria to the response
probabilities. In the second step, we build upon the previous result to demonstrate the one-to-one mapping of the perceptual sensitivities
to the response probabilities.

One-to-one mapping of the 2-ADC criteria to the response probabilities during catch trials

First, we demonstrate that there is a one-to-one mapping from the set of criteria, (c1, c2), to set of response probabilities during
catch trials pi0, i ∈ {0, 1, 2} (as mentioned before, we use pi0 as a notational shorthand for p(Y = i|Xi = 0, Xj = 0)).

We consider the system of response probabilities when no stimulus was presented (X1 = X2 = 0), i.e. false-alarm rates at each
location during catch trials:

p1
0 =

∫ ∞
c1

F2(e− c1 + c2) f1(e) de

p2
0 =

∫ ∞
c2

F1(e− c2 + c1) f2(e) de (11)

We demonstrate that if set of criteria (c1, c2) produces a given set of response probabilities pi0, then it is the only set that can
produce these probabilties. The analytical proof rests on the following lemmas:

Lemma 1 pi0(ci, cj) is a monotonically decreasing function of ci and a monotonically increasing function of cj , i, j ∈
{1, 2}, i 6= j.

Lemma 2 p0
0 is a monotonically increasing function of both c1 and c2. Specifically, p0

0 = F1(c1) F2(c2).

Simply put, these lemmas assert that response probabilities vary monotonically as a function of choice criteria. The proof of these
lemmas is provided in Appendices A.1-A.2 (Supplemental Data). The proof assumes no specific form for the functions f1 and f2; only
that they are continuous and supported over the entire domain of integration. Upon rearrangement of the identity in Lemma 2:

Fi(ci) = p0
0/Fj(cj) i, j ∈ {1, 2}, i 6= j (12)

The sequence of arguments for the proof follows:
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(i) Let (c1, c2) be a set of criteria that produces Pi0 of pi0. Assume that there exists another set (c′1, c
′
2) that also produces these same

probabilities, such that at least one c′i is distinct from ci.

(ii) Without loss of generality, let c1 > c′1.

(iii) From Lemma 1,
c1 > c′1 ⇒ p1

0(c1, c2) = P1
0 < p1

0(c′1, c2). Similarly,
c1 > c′1 ⇒ p2

0(c1, c2) = P2
0 > p2

0(c′1, c2).

(iv) Hence, it follows that c′2 > c2 for constant Pi0. In other words, if one choice criterion increases, the other must also increase to
keep p1

0 constant.

(v) Being cumulative distribution functions, Fi-s are monotonic functions of their arguments. Thus, F (c1) > F (c′1)⇔ c1 > c′1.

(vi) From Lemma 2, (equation 12), and point (v) above: c1 > c′1 ⇒ c′2 < c2 for constant P0
0 . In other words, if one choice criterion

increases, the other must decrease to keep p0
0 constant.

The proof follows by contradiction.

One-to-one mapping of the 2-ADC sensitivities to the response probabilities during stimulus trials

Next, we demonstrate, based on the previous result, that there is a one-to-one mapping from the set of sensitivities, (d1, d2) to the
set of response probabilities during stimulus trials pij , i ∈ {0, 1, 2}, j ∈ {1, 2}.

For a stimulus presented at location i (Xi = 1), response probabilities at location i are given by (refer equation system 10):

p1
1 =

∫ ∞
c1−d1

F2(e+ d1 − c1 + c2) f1(e) de (13)

p2
2 =

∫ ∞
c2−d2

F1(e+ d2 − c2 + c1) f2(e) de (14)

The proof rests on the following lemma, which is proved in Appendix B.3 (Supplemental Data):

Lemma 3 pij(di, dj) is a strictly monotonic function of its arguments (di, dj), i, j ∈ {1, 2}, i 6= j.

The sequence of arguments for the proof follows:

(i) Based on the previous section, we have already established a one-to-one mapping from the set of criteria (c1, c2) to the response
probabilities during catch trials. Thus, the criteria are fixed based on the proportion of false-alarms and correct rejections.

(ii) Given a particular (c1, c2), each of the probabilities, p1
1 and p2

2, in the above system of equations is only a function of its respective
di, i ∈ {1, 2}.

(iii) By Lemma 3, pii is a strictly monotonic function of its respective di.

(iv) In other words, there is a one-to-one mapping of the di-s to the respective pii-s.

We have shown that given a set of choice criteria, there is a one-to-one mapping of the sensitivities to the response probabilities.
In the previous section, we showed a similar one-to-one mapping of the choice criteria to the response probabilities. Thus, there is a
one-to-one mapping from the set of parameters {di, ci}, i ∈ {1, 2} to a given set of response probabilities (given by model equations 3).
This completes the proof.
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A.2 Identifiability of of m-ADC model

In the previous section, we showed that the 2-ADC model is identifiable. In this section we extend this result to demonstrate that
the m-ADC model is also identifiable. In other words, there is a one-to-one mapping of the model parameters (sensitivities, criteria) to
the response probabilities in the m-ADC model.

As before, we rewrite equations 6 with the notation for the more general notation for the probability density and cumulative
distribution functions (fi and Fi, see Methods).

p(Y = i| ξ) =

∫ ∞
ci−d(ξi)

∏
k,k 6=i

Fk(e+ d(ξi)− d(ξk)− ci + ck) fi(e) dep(Y = 0| ξ) =
∏
k

Fj(ck − dk(ξk)) (15)

The demonstration proceeds in two steps. First we demonstrate the following with mathematical induction: if the m-ADC model
(for a task with m response alternatives) has a one-to-one mapping of the criteria to the response probabilties, then so does the (m+1)-
ADC model (for a task with (m + 1) alternatives). Next, we utilize monotonicity to show that there is a one-to-one mapping of the
perceptual sensitivities to the response probabilities for the m-ADC model.

One-to-one mapping of the m-ADC criteria to the response probabilities during catch trials

We consider the probabilities of response during catch trials. This is given by setting d(ξk) = 0∀k in equation system 15:

pi0 =

∫ ∞
ci

∏
k,k 6=i

Fk(e− ci + ck) fi(e) de

i ∈ {0, . . . ,m} (16)

where pi0 = p(Y = i| ξ; ‖dξ‖1 = 0).

Statement Given a set of response probabilities Pi0 for an m-alternative model, and the ordered set of criteria C = {ci :

i ∈ {0, . . . ,m}} that produce these probabilities (according to the system of equations 16 then there is no alternate set of
criteria C∗ that produces the same probabilities.

Basis There is a one-to-one mapping from the set of criteria C = {c1, c2} to the response probabilities in a 2-alternative
model (m=2).

Inductive step Let there be a one-to-one mapping from the set of criteria to the response probabilities in an m-alternative

model, i.e., given a set of response probabilities pi0 = Qi, there is one, and only one, set of m-ADC criteria Cm = {ci : i ∈
{0, . . . ,m}} that produces these probabilities (from the system of equations 16). Then, given a set of response probabilities
pi0 = Pi0 for an m+1-alternative model, and a set of criteria Cm+1 = {cj : j ∈ {0, . . . ,m + 1}} that produces these
probabilities there is no other set C∗m+1 that also produces the same probabilities, i.e., there is a one-to-one mapping from
the set of criteria to the response probabilities in an m+1-alternative model.

Proof of basis In a previous section we proved the one-to-one mapping of the criteria to the 2-ADC response probabilities during
catch trials (Appendix A.1, Supplemental Data). This constitutes the proof of the basis for m = 2.

Proof of inductive step The inductive step is proved, as before, in two stages:
The proof rests on the following lemmas, which are proved in Appendices A.4-A.6 (Supplemental Data).
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Lemma 4 Given a set of response probabilities pr0 = Pr0 , r ∈ {0, . . . ,m + 1}, and any set of criteria C = {cj : j ∈
{0, . . . ,m + 1}} comprising an ordered set that produces these probabilities (according to equations 16). There is a one-
to-one correspondence between any choice criterion ci in C and its complement set C ′i = {cj : j ∈ {0, . . . ,m+ 1}, j 6= i}
that excludes ci.

Lemma 5 Given a set of response probabilities Pi0, i ∈ {1, . . . ,m+ 1} and the set of all sets of criteria {Ck = {cjk : j ∈
{0, . . . ,m + 1}}} comprising ordered sets that produce these probabilties (according to equations 16). For any two sets
C1 and C2, every pair of corresponding elements (cj

1, cj
2) obeys the same order relation, i.e., if any ci1 ≷ ci

2 then every
cj

1 ≷ cj
2, i, j ∈ {0, . . . ,m+ 1}, i 6= j.

Lemma 6 Given a set of response probabilities P0
0 and the set of all sets of criteria {Ck = {cjk : j ∈ {0, . . . ,m + 1}}}

comprising ordered sets that produce these probabilties (according to equations 16). For any two sets C1 and C2, at
least one pair of corresponding elements (cj

1, cj
2) differs in its order relation, i.e., if any ci1 ≷ ci

2 then at least one
cj

1 ≶ cj
2, i, j ∈ {0, . . . ,m+ 1}, i 6= j.

Simply put, Lemma 4 states that given set of false-alarm and correct rejection rates, fixing one choice criterion determines all of
the other choice criteria. The proof of Lemma 4 utilizes the induction hypothesis (see Appendix B.4, Supplemental Data). Lemma 5
states that if the choice criterion to one location were to increase (decrease), the choice criterion at every location has to also increase
(decrease) to maintain the false-alarm rate unchanged at each location. Lemma 6 states that if the choice criterion to one location
were to increase (decrease), the choice criterion at least at one location has to decrease (increase) to maintain the correct rejection rate
unchanged.

The sequence of arguments for the proof proceeds as follows:

(i) LetC = {cj : j ∈ {0, . . . ,m+1}} be a set of criteria that produce a specific value of pi0 = Pi0. LetC ′ = {c′j : j ∈ {0, . . . ,m+1}}
be a different set that produces the same Pi0.

(ii) By Lemma 4, cj 6= c′j ∀ j. Without loss of generality, let ci > c′i.

(iii) By Lemma 5, if ci > c′i, then cj > c′j ∀ j, j 6= i.

(iv) By Lemma 6, if ci > c′i, then at least one cj < c′j for some j 6= i.

The proof follows by contradiction. Thus, the set of criteria C = {cj : j ∈ {0, . . . ,m + 1}}, which produces mathcalP i0
(according to equations 16) is unique. In other words, there is a one-to-one mapping from the set of criteria to the response probabilities
during catch trials (false-alarm rates and correct rejections).

One-to-one mapping of the m-ADC sensitivities to the response probabilities during stimulus trials

The proof rests on the following lemma (proved in Appendix B.7, Supplemental Data):

Lemma 7 The response probability pij(d(ξk)) is a strictly monotonic function of d(ξk).

The sequence of arguments proceeds as follows:

(i) By the task specification, no more than one stimulus is presented on a given trial. Thus, for a fixed set of criteria C, the response
probabilities pii of equation system 15 are simply a function of their respective perceptual sensitivities di.

(ii) From Lemma 7, the response probability pii(d(ξi)) is a strictly monotonic function of its respective di, i ∈ {1, . . . ,M}.

(iii) Strict monotonicity implies a one-to-one mapping of the d(ξi)-s to the respective pii-s.

This completes the proof. Note that the same arguments could be made with other sets of probabilities, such as the false-alarm
rates, pji , for reporting a stimulus at location j when a stimulus was presented at location i, which are also monotonic functions of d(ξi)

(Appendix B.7, Supplemental Data).
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B Proof of lemmas on model identifiability

In this section, we demonstrate analytically various lemmas (employed in Appendix A) on model identifiablity.

B.1 Proof of Lemma 1: Monotonic variation of the probability of a NoGo response with choice
criteria in 2-ADC catch trials

Assertion: p(Y = 0|‖X‖1 = 0) (or p0
0) is a monotonically increasing function of both c1 and c2. Specifically, p0

0 = F1(c1) F2(c2).

Proof: We compute the probability of a NoGo response during catch trials. This happens when Ψ falls below the criterion at both
locations (Y = 0, iffΨ1 ≤ c1 ∩ Ψ2 ≤ c2). Thus,

p(Y = 0|X) = p(Ψ1 ≤ c1 ∩ Ψ2 ≤ c2) (17)

Upon substitution of the structural model, and noting that the εi are independent, this gives:

p(Y = 0|X) = p(ε1 ≤ c1 ∩ ε2 ≤ c2)

= p(ε1 ≤ c1)p(ε2 ≤ c2)

= F1(c1) F2(c2) (18)

Thus, the probability of a correct rejection in the 2-ADC model factors into the product of the 1-ADC correct-rejection probabilities.

p0
0 = F1(c1) F2(c2) (19)

As the Fi-s are positive, and monotonically increasing functions of their arguments, p0
0 is a monotonically increasing function of

c1 and c2.

B.2 Proof of Lemma 2: Monotonic variation of the probabilities of Go responses with choice
criteria in 2-ADC catch trials

Assertion: p(Y = i|‖X‖1 = 0) (or pi0) is a monotonically decreasing function of ci and a monotonically increasing function of cj .

Proof: We reproduce equation system 11 here:

p1
0 =

∫ ∞
c1

F2(e+ c2 − c1) f1(e) de (20)

p2
0 =

∫ ∞
c2

F1(e+ c1 − c2) f2(e) de (21)

With increasing c1, p1
0 has to decrease because:

(i) The integrand (F2(e+c2−c1), specifically) decreases because F2 is a monotonic function of its arguments (e+c2−c1 decreases)

(ii) The domain of integration (c1 →∞) decreases as c1 increases (the integrand is never negative)

With increasing c2, p1
0 has to increase because the integrand increases (F2(e + c2 − c1), specifically), and the domain of integration is

unaffected by c2. The (converse) effects of c1 and c2 on p2
0 can be similarly argued.
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B.3 Proof of Lemma 3: Monotonic variation of response probabilities with perceptual sensitivi-
ties in 2-ADC stimulus trials

Assertion: p(Y = i|Xi = 1) (or pii) and p(Y = i|Xj = 1) (or pij) are both monotonic functions of di and dj(i, j ∈ {1, 2}).

Proof: We reproduce part of equation system 10 here for reference.

p(Y = i|X) =

∫ ∞
ci−diXi

Fj(e+ diXi − djXj − ci + cj) fi(e) de (22)

i, j ∈ {1, 2}, i 6= j

where we have dropped the subscript from ei (a variable of integration).
With increasing di, p(Y = i|Xi = 1) or pii has to increase because:

(i) The integrand (Fj(e+ di − ci + cj), specifically) increases because Fj is a monotonic function of its arguments (di increases)

(ii) The domain of integration (ci − di →∞) increases as di decreases (the integrand is never negative)

With increasing dj , p(Y = i|Xj = 1) or pij has to decrease because:

(i) The integrand (Fj(e− dj − ci + cj), specifically) increases because Fj is a monotonic function of its arguments (-dj decreases)

(ii) The domain of integration is unaffected by dj .

This completes the proof.

B.4 Proof of Lemma 4: One-to-one correspondence of m-ADC choice criteria

Assertion: Given a set of response probabilities pr0 = Pr0 , r ∈ {0, . . . ,m + 1}, and a set of criteria C = {cj : j ∈ {0, . . . ,m + 1}}
that produces these probabilities (according to equation system 16). There is a one-to-one correspondence between any choice criterion

ci and its complement set C ′i = {cj : j ∈ {0, . . . ,m+ 1}, j 6= i}.

Proof: The proof proceeds in two steps, first demonstrating the mapping ζ : C ′i 7→ ci, and then its inverse ζ−1 : ci 7→ C ′i.
First, consider the probability p0

0 = P0
0 . A given choice criterion ci, i ∈ {0, . . . ,m+ 1} can be expressed in terms of the remaining

criteria in the following way.

P0
0 =

m+1∏
j=1

Fj(cj) (23)

ci = F−1
i (

P0
0∏m+1

j=1,j 6=i Fj(cj)
) (24)

where Fi is invertible, being a cumulative distribution function. Given a particular p0
0 = P0

0 , and a set of m criteria {cj : j ∈
{0, . . . ,m+ 1}, j 6= i} the remaining criterion ci is uniquely determined, thus demonstrating the mapping φ : C ′i 7→ ci.

Next, consider the set of probabilities Pi0. From system 16, these can be written as:

Pi0 =

∫ ∞
ci

m+1∏
k=1,k 6=i

Fk(e− ci + ck) fi(e) de (25)
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With the variable substitution e′ = e− ci, and following some algebra, this set of equations can be rewritten as:

Pi0 =

∫ ∞
0

m+1∏
k=1,k 6=i

Fk(e+ ck) fi(e+ ci) de (26)

Let C be a set of criteria {cj : j ∈ {0, . . . ,m + 1}} that produces the probabilities on the left hand side of this equation. Let us
assume that one of the criteria in this set, say cm+1 (without loss of generality) has a known value.

Define the following functions (for i ∈ {0, . . . ,m}).

Fµ(e; cm+1) = [Fm+1(e+ cm+1)]
1
m (27)

Gi(e+ ci; cm+1) = Fi(e+ ci) Fµ(e; cm+1) (28)

We note that both Fµ and Gi are parameterized by cm+1. Fµ, the m-th root of a cumulative distribution function, and G, the
product of Fµ and Fi are both monotonic, continuous functions, and it is easy to see that lim

e→−∞
Gi = 0; lim

e→+∞
Gi = 1. Thus, Gi is

itself a cumulative distribution function with the following probability density:

gi(e+ ci; cm+1) =
∂G

∂e
(29)

= Fi(e+ ci)
∂Fµ(e; cm+1)

∂e
+ Fµ(e; cm+1) fi(e+ ci) (30)

Now, let us consider the following system of equations:

Qi =

∫ ∞
0

m∏
k=1,k 6=i

Gk(e+ ck; cm+1) gi(e+ ci; cm+1) de (31)

With some algebra, we can show that Qi = Pi0 + (Pm+1
0 /m).

By the induction hypothesis for m-equations, given a set of qi-s, and the parameter cm+1, all of the ck-s are uniquely determined.
Because cm+1 was an arbitrarily chosen criterion, the result can be generalized as follows: given a set of Qi-s, and any choice criterion
ci, all of the other choice criteria in C ′i = {cj : j ∈ {0, . . . ,m + 1}, j 6= i}-s are uniquely determined, thus demonstrating the inverse
mapping φ−1 : ci 7→ C ′i.

Thus, for a given set of response probabilities Pi0 and a set of criteria C that produces these probabilities, we have shown a
one-to-one correspondence among any one choice criterion, and the remaining criteria in the set ci ↔ C ′i.

B.5 Proof of Lemma 5: Direct variation among all criteria in the m-ADC model

Assertion: Given a set of response probabilities Pi0, i ∈ {1, . . . ,m+1} and the set of all sets of criteria {Ck = {cjk : j ∈ {0, . . . ,m+

1}}} comprising ordered sets that produce these probabilties (according to equations 16). For any two sets of criteria C1 and C2, every

pair of corresponding elements (cj
1, cj

2) obeys the same order relation, i.e., if any ci1 ≷ ci
2 then every cj1 ≷ cj

2, i, j ∈ {0, . . . ,m+1}.

Proof: Given set of response probabilities Pi0. Let C1 = {cj1 : j ∈ {0, . . . ,m+ 1}} be a set of criteria the produce these probabilities,
and let C2 = {cj2 : j ∈ {0, . . . ,m + 1}} be another, distinct (not identical) set that also produces the same probabilities. Also let all
choice criteria from set C1, except that corresponding to choice i (ci), be greater (or lesser) in value than the corresponding criteria in set
C2. We demonstrate that in this case, the criterion ci in set C1 must also be greater (or lesser) in value than the corresponding criterion
in set C2.
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The Pi0 are given by (refer equation 26):

Pi0 =

∫ ∞
0

m+1∏
j=1,j 6=i

Fj(e+ cj
1) fi(e+ ci

1) de (32)

=

∫ ∞
0

m+1∏
j=1,j 6=i

Fj(e+ cj
2) fi(e+ ci

2) de

Note that if cj1 ≷ cj
2,

m+1∏
j=1,j 6=i

Fj(e+ cj
1) ≷

m+1∏
j=1,j 6=i

Fj(e+ cj
2) ∀e (33)

as the Fj-s are monotonically increasing functions of their arguments. Hence, for the right hand sides of equation 33 to be equal
to each other (and each equal to Pi0) ci1 ≷ ci

2. The latter result is confirmed by inspecting the integrands of equation 33, and is also
evident from the following lemma.

Lemma 8 The response probability pi0 is a strictly (monotonically) increasing function of cj and a strictly (monotonic)
decreasing function of ci.

The lemma is proved in a subsequent section. Thus, if every cj1 ≷ cj
2, j ∈ {0, . . .m+1}, j 6= i then, ci1 ≷ ci

2. However, we have
just shown that there is a one-to-one correspondence between each ci and its complement set C ′i = {cj : j ∈ {0, . . . ,m + 1}, j 6= i}.
Thus, the converse statement must also hold: that is, if ci1 ≷ ci

2, then every cj1 ≷ cj
2, j ∈ {0, . . .m}, j ∈ {0, . . . ,m+ 1}, j 6= i. This

completes the proof.

B.6 Proof of Lemma 6: Inverse variation among at least a pair of criteria in the m-ADC model

Assertion: Given a set of response probabilities P0
0 and the set of all sets of criteria {Ck = {cjk : j ∈ {0, . . . ,m + 1}}} comprising

ordered sets that produce these probabilties (according to equations 16). For any two sets C1 and C2, at least one pair of corresponding

elements (cj
1, cj

2) differs in its order relation, i.e., if any ci1 ≷ ci
2 then at least one cj1 ≶ cj

2, i, j ∈ {0, . . . ,m+ 1}, i 6= j.

Proof: Given set of response probabilities Pi0. Let C1 = {cj1 : j ∈ {0, . . . ,m + 1}} and C2 = {cj2 : j ∈ {0, . . . ,m + 1}} be
distinct sets of criteria that produce these probabilities (given by equation system 16). Also let any one choice criterion from set C1,
corresponding to choice i (ci), be greater in value than the corresponding criterion in set C2 i.e. ci1 > ci

2.
We prove the result by contradiction. Assume that none of the other criteria in set C1 is lesser than the corresponding criteria in set

C2. In other words, every cj1 ≥ cj2, j ∈ {0, . . .m+ 1}.
Given the probability of a NoGo response during catch trials, this can be written as:

P0
0 =

m+1∏
j=1

Fj(cj
1) =

m+1∏
j=1

Fj(cj
2) (34)

The functions Fj are monotonic functions of their arguments. If every cj1 ≥ cj
2 equality of the right hand side expressions holds

only if cj1 = cj
2, which violates the assumption that C1 and C2 are non-identical sets. Thus, if any one ci1 > ci

2, the assumption
that none of the other criteria in set C1 is lesser than the corresponding criteria in set C2 leads to a contradiction. Hence, if any
ci

1 > ci
2, i ∈ {0, . . . ,m+ 1} then at least one criterion in set C1 has to be lesser than the corresponding criterion in set C2.

It is easy to see that the converse is also true, i.e. if any ci1 < ci
2, i ∈ {0, . . . ,m+ 1} then at least one criterion in set C1 has to be

greater than the corresponding criterion in set C2. This completes the proof.
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B.7 Proof of Lemma 7: Monotonic variation of m-ADC response probabilities with perceptual
sensitivity

Assertion: The response probability pij is a strictly monotonic (increasing) function of d(ξi) and a strictly monotonic (decreasing)
function of d(ξj).

Proof: We reproduce the system of equations 15 for reference:

p(Y = i| ξ) =

∫ ∞
ci−d(ξi)

m∏
k=1,k 6=i

Fk(e+ d(ξi)− d(ξk)− ci + ck) fi(e) de (35)

Consider the probability of response to location i when the stimulus is presented at the same location (d(ξk) = 0 ∀ k 6= i).

pii =

∫ ∞
ci−d(ξi)

m∏
k=1,k 6=i

Fk(e+ d(ξi)− ci + ck) fi(e) de (36)

With increasing d(ξi), the response probability pii has to increase, as the integrand increases with d(ξi) (each Fk is a monotonically
increasing function of its argument), and the integration (positive integrand) occurs over a larger domain (ci − d(ξi) decreases).

Next, consider the probability of response to location i when the stimulus is presented at location j, j 6= i (d(ξk) = 0 ∀ k 6= j).

pij =

∫ ∞
ci

m∏
k=1,k 6=i,j

Fk(e− ci + ck)Fj(e− d(ξj)− ci + cj) fi(e) de (37)

Again, it is apparent that with increasing d(ξj) the response probability pij has to decrease, as the integrand (Fj(e − d(ξj) − ci + cj),
specifically) decreases with increasing d(ξj) (the domain of integration is unaffected by d(ξj)).

This completes the proof.

B.8 Proof of Lemma 8: Monotonic variation of m-ADC response probabilities with choice criteria

Assertion: The response probability pi0 is a strictly monotonic (decreasing) function of ci and a strictly monotonic (increasing) function
of cj .

Proof: Consider the probability of response to location i when the no stimulus is presented (Xk = 0∀k).

pi0 =

∫ ∞
ci

m∏
k=1,k 6=i

Fk(e− ci + ck) fi(e) de (38)

With increasing ci, the response probability pi0 has to decrease as the integrand decreases with ci (eachFk a monotonically decreases
with ci), and the integration (positive integrand) occurs over a smaller domain. Similarly, with increasing cj , pi0 has to increase as the
integrand (Fj(e− ci + cj), specifically) increases with cj .

This completes the proof.
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C Concavity of the log-likelihood function

In this section, we identify key challenges with demonstrating the concavity of the log-likelihood function. While there are many
ways to demonstrate concavity analytically, perhaps the most conceptually straightforward is the second derivative test.

We consider the multinomial log-likelihood function for the 2-ADC model.

L =

2∑
i=0

2∑
j=0

Oij log(pjp
i
j) + C (39)

where Oij represents the observed number of responses to location i for the stimulus event j, pj represents the prior probability
of stimulus event j and pij denotes the probability of response to location i for the stimulus event j (a conditional probability), and C
represents an additive constant associated with the multinomial coefficient

(
N
Oi

j

)
, where N is the total number of observations.

The prior probability of each stimulus event, pj , is generally constant across an experimental session. With this assumption, the pj
terms can be factored out of L, as they contribute only an additive term to L without affecting its shape. Thus, to prove convexity, let us
consider a simplified function that excludes all of the additive terms:

L′ =

2∑
i=0

2∑
j=0

Oij log(pij) (40)

In order to prove concavity of this function, we need to show that its Hessian is negative semidefinite (non-positive eigenvalues).
Note that L′ is a function of the four 2-ADC model parameters (d1, d2, c1, c2). Thus, its Hessian is given by:

H̃ =


∂2L′

∂d21

∂2L′

∂d1 ∂d2
∂2L′

∂d1 ∂c1
∂2L′

∂d1 ∂c2
∂2L′

∂d2 ∂d1
∂2L′

∂d22

∂2L′

∂d2 ∂c1
∂2L′

∂d2 ∂c2
∂2L′

∂c1 ∂d1
∂2L′

∂c1 ∂d2
∂2L′

∂c21

∂2L′

∂c1 ∂c2
∂2L′

∂c2 ∂d1
∂2L′

∂c2 ∂d2
∂2L′

∂c2 ∂c1
∂2L′

∂c22

 (41)

Each term of the Hessian may be represented as
∂2L′

∂θ1 ∂θ2
, where θ1 and θ2 represent a two of the four parameters (not necessarily

distinct). With some algebra, this generic term evaluates to:

∂2L′

∂θ1 ∂θ2
=

2∑
i=0

2∑
j=0

Oij
∂

∂θ1

(
1

pij

∂pij
∂θ2

)

=

2∑
i=0

2∑
j=0

Oij
1

pij

(
∂2pij
∂θ1 ∂θ2

− 1

pij

∂pij
∂θ1

∂pij
∂θ2

)
(42)

These represent 10 distinct terms in the Hessian, since it is a symmetric matrix. However, certain simplifications are possible. For
example, we can show that:

∂pij
∂dk

= −δjkXk

∂pij
∂ck

(43)

where δjk is the Kronecker delta function, i, j ∈ {0, 1, 2} and k ∈ {1, 2}. In other words, the partial derivative of the response
probabilities with respect to the sensitivities, are numerically equal to the partial derivatives with respect to the corresponding criteria
(demonstrated analytically, below). This result is not surprising, per se, given that each response probability, pij (given by equation 10)
is invariant on the surface ci − diXi = const and cj − djXj = const, i.e., increasing ci or decreasing di by the same value (or vice
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versa) causes piX to change by the same amount (for a graphical intuition, see Figure 5C).
Based on these relations, we can define the second partial derivatives of the response probabilities as:

∂2pij
∂dk ∂dl

= δklδjkXk

∂2pij
∂ck ∂cl

(44)

∂2pij
∂dk ∂cl

= −δjkXk

∂2pij
∂ck ∂cl

From equations 42, 43 and 44, the Hessian is populated by second partial derivatives, of the form
∂2pij
∂c1 ∂c2

, as well as products of

the first partial derivatives, of the form
∂pij
∂c1

∂pij
∂c2

. The product with the Kronecker delta functions and the Xj-s renders some of these
terms zero.

We have previously shown (Appendix B.1-B.2) that the pij in the 2-ADC model are monotonic functions of the criteria. Thus, the

first partial derivatives
∂pij
∂ck

are either always positive or negative for a given i, j, k. No such generalization can be made on the second

partial derivatives (e.g., Figure S1A); these appear to vary with the actual value of c1 and c2.
We analytically evaluate the first order partial derivatives of pij with respect to the four parameters (d1, d2, c1, c2), to verify if further

simplification of the Hessian (equation 42) may be achieved.
We reproduce part of equation system 10 for the 2-ADC task here for reference.

p(Y = i|X) =

∫ ∞
ci−diXi

Fj(e+ diXi − djXj − ci + cj) fi(e) de (45)

i, j ∈ {1, 2}, i 6= j

We rewrite the above equations with the following transformation e′ = e − ci + diXi; with this transformation, the criterion and
sensitivity are eliminated from the limits of integration. The system may then be rewritten as:

p(Y = i|X) =

∫ ∞
0

Fj(e
′ + cj − djXj) fi(e

′ + ci − diXi) de
′ (46)

i, j ∈ {1, 2}, i 6= j

Computing the partial derivative of system 46 with respect to di (and replacing the dummy variable of integration e′ with e):

∂p(Y = i|X)

∂di
=

∂

∂di

(∫ ∞
0

Fj(e+ cj − djXj) fi(e+ ci − diXi) de

)
=

∫ ∞
0

∂

∂di
(Fj(e+ cj − djXj) fi(e+ ci − diXi)) de

=

∫ ∞
0

Fj(e+ cj − djXj)

(
∂fi(e+ ci − diXi)

∂di

)
de

(47)
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Integrating by parts, and noting that ∂
∂di

(dkXk) = δikXk, we have:

∂p(Y = i|X)

∂di
=

[
Fj(e+ cj − djXj)

∂Fi(e+ ci − diXi)

∂di

]∞
0

−
∫ ∞

0

fj(e+ cj − djXj)
∂Fi(e+ ci − diXi)

∂di
de

= −Fj(cj − djXj) fi(ci − diXi)(−Xi)

−
∫ ∞

0

fj(e+ cj − djXj) fi(e+ ci − diXi)(−Xi) de

= Xi {Fj(cj − djXj) fi(ci − diXi)

+

∫ ∞
0

fj(e+ cj − djXj) fi(e+ ci − diXi) de}

(48)

Computing the partial derivative of system 46 with respect to dj :

∂p(Y = i|X)

∂dj
=

∫ ∞
0

(
∂Fj(e+ cj − djXj)

∂dj

)
fi(e+ ci − diXi) de

=

∫ ∞
0

fj(e+ cj − djXj)(−Xj)fi(e+ ci − diXi) de

= −Xj

∫ ∞
0

fj(e+ cj − djXj)fi(e+ ci − diXi) de

(49)

Similarly, computing the partial derivative of system 46 with respect to ci and cj (noting that ∂
∂ci

(ck) = δik):

∂p(Y = i|X)

∂ci
= −(Fj(cj − djXj) fi(ci − diXi)

+

∫ ∞
0

fj(e+ cj − djXj) fi(e+ ci − diXi) de) (50)

∂p(Y = i|X)

∂cj
=

∫ ∞
0

fj(e+ cj − djXj)fi(e+ ci − diXi) de (51)

From these equations, it is clear that:

∂piX
∂di

= −Xi
∂piX
∂ci

∂piX
∂dj

= −Xj
∂piX
∂cj

(52)

where we have used the notation piX for p(Y = i|X). These equations are equivalent to equations 43, above.
These first partial derivatives do not appear to permit further simplification. Computing the second partial derivatives from equations

48 and 49 and, subsequently, demonstrating that the eigenvalues of the Hessian (equation 42) are non-positive, appears to require con-
siderable further algebraic manipulation. These results highlight the challenges with demonstrating the concavity of the log-likelihood
function.
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D Proof of results on model optimality

In this section, we derive various results regarding optimal decision surfaces for the m-ADC model.

D.1 Optimal decision surfaces are hyperplanes of constant posterior odds ratio

We define the following relations (to be used in our derivation) for a stimulus detection task (e.g.,Figure 1A):

λkl = Ckl − C0
l (53)

Li0(Ψ) =
Nm(Ψ|Xi = 1)

Nm(Ψ|Xk = 0 ∀k)
(54)

Λi0(Ψ) =
pi
p0
Li0 (55)

where Ckl represents the cost of responding to location k when a stimulus occurred at location l; C0
l represents the cost of giving

a NoGo response, when a stimulus occurred at location l; λkl represents the cost of responding to location k relative to giving a NoGo
response, when a stimulus occurred at location l; Li0(Ψ) is the likelihood ratio corresponding to a stimulus at location i relative to no
stimulus, and Λi0(Ψ) is the posterior odds ratio given by multiplying the likelihood ratio by the prior odds ratio of a stimulus at location
i relative to no stimulus: pi/p0 = p(Xj = 1)/p(Xi = 0 ∀ i). We note that, for variables C and λ, non-zero subscripts refer to the
location of stimulus, and non-zero superscripts to the location of response. A subscript of zero (e.g., Ck0 ) denotes the no-stimulus event
(catch trial), whereas a superscript of zero (e.g., C0

k) denotes a NoGo response.
The general form of optimal decision surfaces for maximizing average utility (or minimizing average risk), for additive signals and

noise, obey the following relations (Middleton & Meter, 1955, equations 16-17):

Lk(Ψ) = Ll(Ψ); Lk(Ψ) = 0 ∀ k, l ∈ {1, . . . ,m}, k 6= l

where:

Lk = λk0 +

m∑
i=1

λki Λi(Ψ) (56)

These hypersurfaces enclose m + 1 distinct decision domains corresponding to each of the m response alternatives and the NoGo
response.

We can rewrite these equations as:

λk0 +

m∑
i=1

λki Λi0(Ψ) = λl0 +

m∑
i=1

λliΛi0(Ψ) k 6= l (57)

λk0 +

m∑
i=1

λki Λi0(Ψ) = 0 (58)

Substituting for the relative costs, λ, in terms of the absolute costs, C, yields:

Ck0 − C0
0 +

m∑
i=1

(Cki − C0
i )Λi0(Ψ) = Cl0 − C0

0 +

m∑
i=1

(Cli − C0
i )Λi0(Ψ) k 6= l (59)

Ck0 − C0
0 +

m∑
i=1

(Cki − C0
i )Λi(Ψ) = 0 (60)
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These equations can be further simplified as:

Ck0 +

m∑
i=1

Cki Λi0(Ψ) = Cl0 +

m∑
i=1

CliΛi0(Ψ) (61)

Ck0 +

m∑
i=1

Cki Λi0(Ψ) = C0
0 +

m∑
i=1

C0
i Λi0(Ψ) (62)

Our assumption regarding costs (Methods) can be expressed analytically as:

Ckj = Clj ∀j, k, l ∈ {0, . . . ,m}; k 6= j, l 6= j (63)

Incorporating this assumption, equation 61 simplifies to:

(Ckk − Clk)Λk0(Ψ) = (Cll − Ckl )Λl0(Ψ) (64)

Λk0(Ψ)

Λl0(Ψ)
=
Cll − Ckl
Ckk − Clk

(65)

Λkl(Ψ) = βkl (66)

where Λkl(Ψ) = Λk0(Ψ)
Λl0(Ψ) = pk

pl

Nm(Ψ|Xk=1)
Nm(Ψ|Xl=1) is the posterior odds ratio of a stimulus at location k relative to a stimulus at location l

and βkl = (Cll − Ckl )/(Ckk − Clk).
Incorporating the assumption from equation 63, equation 62 simplifies to:

Ck0 + CkkΛk0 = C0
0 + C0

kΛk0 (67)

Λk0 =
C0

0 − Ck0
Ckk − C0

k

(68)

Λk0 = βk0 (69)

Thus, optimal decision surfaces (equations 66 and 69) are the surfaces (hyperplanes) of constant posterior odds ratio (isosurfaces)
for each pair of stimulus events (Λkl) and for each stimulus vs. the no-stimulus event (Λk0). The values of the constants (βkl or βk0)
that define the optimal decision surfaces for reporting a stimulus at a location k vs. one at another location l, depend on the relative
costs (or benefits) of correctly reporting a stimulus (hit) at that location, k (or l), vs. incorrectly reporting (misidentification) the other
location l (or k).

D.2 Optimal decision surfaces intersect at a point

Consider the optimal decision surfaces for detecting a stimulus at location i or location j vs. no stimulus. These are given by:

Ψ∗i di = logβi0 − log
pi
p0

+
d2
i

2

Ψ∗jdj = logβj0 − log
pj
p0

+
d2
j

2

where Ψ∗i and Ψ∗j represent optimal values of Ψi and Ψj specified by equation 7.
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Subtracting the two equations yields:

Ψ∗i di −Ψ∗jdj = logβi0 − logβj0 − log
pi
p0

+ log
pj
p0

+
d2
i

2
−
d2
j

2

= log
βi0
βj0
− log

pi
pj

+
d2
i − d2

j

2
(70)

The ratio of β-s term (first term on the right-hand-side of equation 70) can be expanded as:

βi0
βj0

=

(
C0

0 − Ci0
Cii − C0

i

)(
Cjj − C0

j

C0
0 − C

j
0

)
(71)

=

(
Cjj − C0

j

Cii − C0
i

)(
C0

0 − Ci0
C0

0 − C
j
0

)
(72)

From equation 63, Ci0 = Cj0 , so that (C0
0 − Ci0)/(C0

0 − C
j
0) = 1. In addition, from equation 63, C0

j = Cij and C0
i = Cji . Thus,

(Cjj − C0
j )/(Cii − C0

i ) = (Cjj − Cij)/(Cii − C
j
i ) = βij .

Thus, equation 70 becomes:

Ψ∗i di −Ψ∗jdj = logβij − log
pi
pj

+
d2
i − d2

j

2
(73)

Notice that the right-hand-side of this equation is identical with the right-hand-side of equation 8. Thus, these optimal values of
Ψ∗i and Ψ∗j for detecting a stimulus at location i or location j, respectively, in noise (equation 7) also lie on the optimal surfaces for
reporting a stimulus at location i versus a stimulus at location j (equation 8). This completes the proof demonstrating that optimal
decision surfaces defined by equation 7 and 8 intersect at a point.
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E Model for a discrimination task with a NoGo response

In this section, we derive the model equations for two-alternative discrimination task that incorporates a NoGo response.
In the conventional 2-AFC discrimination task, the observer indicates, for example, how a test (target) stimulus differs from

a standard stimulus (e.g., brighter versus dimmer, longer versus shorter, clockwise versus counterclockwise direction of rotation or
movement).

On the other hand, in a ternary choice 2-ADC discrimination task, the observer must, in addition, indicate if she/he perceives the
target stimulus to be the same as the standard by giving a NoGo response. For example, in a 2-ADC orientation discrimination task,
the observer must not only indicate whether a target stimulus differs in orientation from a standard, with a Go/NoGo response, but must
also indicate the direction of the difference as clockwise or counterclockwise (from the standard), with different Go responses.

We describe the 2-ADC discrimination model based on the length discrimination task of García-Pérez and Alcalá-Quintana (2011a)
(see main text for description), although, the model is generally applicable to other discrimination tasks (like the orientation discrimina-
tion task just described) as well.

In this model, independent decision variables ΨA and ΨB encode sensory evidence for the stimulus above and the stimulus below,
respectively. In the “L-configuration” the stimulus above is the test (vertical) stimulus, and the stimulus below is the standard (hori-
zontal). In the “inverted-L” configuration, the stimulus above is the standard (horizontal) and the stimulus below is the test (vertical)
stimulus.

Just as in the conventional 2-AFC design, the observer reports the longer stimulus (above or below) by comparing the perceived
lengths of each (relative values of ΨA− and ΨB ; biases in this decision are captured by the respective choice criteria (relative values of
cA and cB). The key exception to this rule is that the observer gives a NoGo response if the perceived length of both stimuli are within
a certain range of the point of subjective equality (gray region defined by the criteria cA and cB in Figure 7A).

Thus, the decision rule for the 2-ADC (discrimination) model is:

Y = 1 if (ΨA < −cB ∩ ΨA − cA > ΨB − cB) ∪

(−cB ≤ ΨA ≤ cA ∩ ΨB < −cA) ∪ (ΨA > cA ∩ ΨA − cA > ΨB − cB)

Y = 2 if (ΨB < −cA ∩ ΨB − cB > ΨA − cA) ∪

(−cA ≤ ΨB ≤ cB ∩ ΨA < −cB) ∪ (ΨB > cB ∩ ΨB − cB > ΨA − cA) (74)

Y = 0 if − cB ≤ ΨA ≤ cA ∩ −cA ≤ ΨB ≤ cB

where the designations Y = 0, 1, 2 correspond to the NoGo, A>B (above > below) and B>A (below > above) responses, respectively,
in Figure 7A. Such a decision rule implies that observers have internalized the point of subjective equality of the test stimulus to the
standard, a plausible assumption when the standard stimulus remains fixed throughout the experiment, and is well-known to the observers
beforehand (the length of the standard stimulus was fixed at 104 pixels in this task, and the authors, who were also the observers, were
presumably familiar with the standard stimulus).

In this model, the psychophysical function (perceived length) is a linear function of stimulus strength (physical length). Thus, the
sensitivity (dz) is linearly related to the physical length (x) of the stimulus as: dz(x) = βzx, where z = {s, t} represent, respectively
the standard (horizontal) and test (vertical) stimuli. The point of subjective equality (PSE, origin of the coordinate axes), is the physical
length of the test stimulus at which its perceived length becomes equal to that of the standard stimulus. Thus, ds(xs) = dt(PSE),
where xs is the length of the standard stimulus (104 pixels). Hence, βsxs = βtPSE or PSE = βsxs/βt.

The structural model is conceptually identical with that of the 2-ADC detection model.

ΨA = d(ξA) + εA ΨB = d(ξB) XB + εB (75)
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where d(ξA) and d(ξB) represent the difference between the perceived length of the stimulus above and below, respectively, from
the perceived length of the standard (ds(xs)) or, equivalently, at the point of subjective equality (dt(PSE)). Thus, when the (vertical)
test stimulus is presented above the (horizontal) standard (L configuration), ξA = xt, ξB = xs, d(ξA) = dt(xt) − dt(PSE) =

dt(xt) − ds(xs) and d(ξB) = ds(xs) − ds(xs) = 0 (because the horizontal/standard is always presented at its standard length).
Similarly, when the (vertical) test stimulus is presented below the (horizontal) standard (inverted-L configuration), ξA = xs, ξB = xt,
d(ξA) = 0, and d(ξB) = dt(xt)− ds(xs). For conciseness, we introduce the notation: ∆d = dt(xt)− ds(xs).

The model may be described, equivalently, as follows: The joint distribution of ΨA and ΨB are represented by a bivariate Gaussian
random variable Ψ = [ΨA,ΨB ] with mean ∆d and identity covariance matrix. The magnitude of ∆d varies with the length of the test
stimulus, xt, as |∆d| = ∆d; the change occurs along the x-axis when the the test stimulus is presented above the standard (L), or along
the y-axis, when the test stimulus is presented below the standard (inverted-L). Thus, ∆d = 0 when xt = PSE.

The response probabilities in this task may be computed by inspection of Figure 7A. For example, the probability of the response
Y = 1 (A>B) is the integral of the distribution of Ψ over the red region: the latter is all of the region below the oblique line ΨB−ΨA =

cB − cA, except for the area overlapping the NoGo response (gray) region. Similarly, the probability of the response Y = 2 (B>A) is
the integral over the blue region, which is all of the region above the oblique line, except for the area overlapping the NoGo response
(gray) region. The probability of a NoGo response (Y = 0) is simply the integral over the gray (rectangular) region.

p(Y = 1|∆d) =

∫ ∞
−∞

∫ ΨA+cB−cA

−∞
ϕ(Ψ; ∆d) dΨAdΨB −

∫ cA

−cB

∫ ΨA+cB−cA

−cA
ϕ(Ψ; ∆d) dΨAdΨB

p(Y = 2|∆d) =

∫ ∞
−∞

∫ ∞
ΨA+cB−cA

ϕ(Ψ; ∆d) dΨAdΨB −
∫ cA

−cB

∫ cB

ΨA+cB−cA
ϕ(Ψ; ∆d) dΨAdΨB (76)

p(Y = 0|∆d) =

∫ cB

−cA

∫ cA

−cB
ϕ(Ψ; ∆d) dΨAdΨB (77)

where we have used the notation ϕ to represent the bivariate normal distribution of the decision variable Ψ.
These equations may be readily modified for the 2-ADCX task, which incorporates an interaction among ΨA and ΨB .
In this case, the mean of Ψ varies with the length of the test stimulus as: ∆dX = [∆d, η ∆d], when the test stimulus is above the

standard (L configuration) or = [η∆d, ∆d] when the test stimulus is below the standard (inverted-L configuration), where, as before
∆d = |∆d| = βtxt− βsxs, and η is the parameter that captures the interaction. η is numerically equal to arctan(α), α being the angle
in the graphical illustration in Figure 7C, and reported in Table 1. Incorporating this value of ∆dX into equations 76 gives the response
probabilities in the 2-ADCX model.

There is considerable scope for future work, including extending the model to the multialternative case, and demonstrating optimal-
ity and identifiability of the parameters. In addition, the assumption regarding the subjects internalizing the point of subjective equality
works well for discrimination tasks with a well-known, fixed standard (as demonstrated by model fits), but would need to be amended
for more general tasks involving roving designs with interleaved standards of different strengths.
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F The m-AFC model with bias as a special case of the m-ADC model

In this section, we demonstrate that the m-AFC model with bias is a special case of the m-ADC model.
In the m-ADC model, if the decision variable never falls below the criterion at any location, the observer never provides a NoGo

response. This can be achieved by setting the criteria to very low (large negative) values. In this case the m-ADC model is identical with
an m-AFC model.

We denote as bi, the difference cm − ci, which we term the bias for location i relative to location m; by this definition, bm = 0.
Introducing these terms into equation system 15:

p(Y = i|ξ) =

∫ ∞
ci−d(ξi)

∏
k,k 6=i

Fk(e+ d(ξi)− d(ξk) + bi − bk) fi(e) de (78)

Formally, the m-ADC model reduces to the m-AFC model as the criteria are reduced to very low values (ci → −∞), while keeping
bi constant. Applying this limit to the above equation:

p(Y = i|ξ) =

∫ ∞
−∞

∏
k,k 6=i

Fk(e+ d(ξi)− d(ξk) + bi − bk) fi(e) de (79)

and p(Y = 0|ξ) = limck→−∞ Fk(ck − d(ξk)) = 0, or, the probability of a NoGo response is zero.
These equations describe a recently developed m-AFC model formulation that incorporates bias (DeCarlo, 2012). Thus, the m-

ADC model is a more general form of the m-AFC model.
Notice that such a model describes the behavior of an ideal observer (one who seeks to maximize success), when no catch trials

are incorporated into the task design. In this case, the prior probability of a catch trial is zero (p0 = 0) and according to equation 9,
limp0→0 Λj0 → −∞, so that cj → −∞, whereas Λij , which does not depend on p0, remains unchanged, as do the differences ci − cj
(and, hence, the bi-s). Thus, an ideal observer’s behavior switches naturally from an m-ADC model to an m-AFC model when catch
trials are excluded from the task design.
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Figure S1: Effect of varying sensitivities and criteria on 2-ADC response probabilities (A) Variation of the probability of response at location 1 with the
criterion at each location (for constant sensitivities, Table S2A). The probability of response to location 1, for a stimulus presented at location 1, decreases
monotonically with an increasing choice criterion (c1) at location 1 (solid red line) and increases monotonically with an increasing choice criterion (c2)
at location 2 (dashed red line). The same monotonic trends are observed when a stimulus is presented at location 2 (blue curves). (B) Variation of
the probability of response at location 1 with the sensitivity at each location (for constant criteria, Table S2A). The probability of response to location 1
increases monotonically with increasing sensitivity (d1) to a stimulus at location 1 (red), and decreases monotonically with increasing sensitivity (d2) to a
stimulus at location 2 (blue).
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Figure S2: Effect of varying psychophysical parameters and criteria on 2-ADC psychometric functions (A) (Left) Psychometric functions p(ξ) at location 1
as a function of stimulus contrast ξ at location 1. The family of curves (light gray to black) correspond to increasing values of asymptotic sensitivity dmax

at location 1. (Right) Same as in left panel, but psychometric functions at location 2 as a function of stimulus contrast at location 1. (Inset) Psychophysical
functions (d(ξ)) for increasing dmax (scale parameter). (B) Same as in (A), but psychometric functions for increasing values of half-max contrast ξ50
(shift parameter). (C) Same as in (A), but psychometric functions for increasing values of the exponent n (slope parameter). (D) Same as in (A), but
psychometric functions for increasing values of the criterion at location 1, c1. (E) Same as in (A), but psychometric functions for increasing values of the
criterion at location 2, c2.
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Figure S3: Bayesian estimation of model parameters with the Markov-Chain Monte Carlo algorithm (A-B) Markov-chain Monte-Carlo (MCMC, Metropolis
sampling) algorithm for estimating perceptual sensitivity (A) and choice criterion (B) at each location from simulated response counts in the two-alternative
detection task (Table S2B). For various initial guesses (colored diamonds-s), the Markov chain converged reliably to identical values of sensitivity and
criterion at each location (black circles). Colored lines: Markov chains during MCMC runs for different initial guesses. (C) Evolution of the values of
sensitivity (upper panel) or criterion (lower panel) at each location during a particular MCMC run (magenta data in panels C-D) for location 1 (red) or
location 2 (blue). Gray bar: burn-in period (1000 iterations). (D) The chi-squared error function (upper panel) decreased steadily, and the log-likelihood
increased (lower panel) over successive iterations of the MCMC run. (E) Stationary (posterior) distributions (circles) of the sensitivity (left panel) and
criterion (right panel) values at each location for the MCMC run (panel E). These distributions were used to construct standard errors and 95% credible
intervals for the parameters (Table S2C). Red data: location 1; blue data: location 2. Lines: Gaussian fits to each distribution.
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bias (c1 = c2 = c). (B) Maximum likelihood estimates of the psychophysical function of stimulus contrast, d(ξ). Black curve: Psychophysical function
estimated with a 2-ADC model that incorporated bias. Red and blue dashed curves: Psychophysical functions at locations 1 and 2, respectively, estimated
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Table S1. Stimulus-response contingency table for 2-AFC and 2-ADC tasks. 

A. 2x2 stimulus-response contingency table for a 2-AFC (Yes/No) task. 

                      Response 

 

Stimulus 

Go response @ 
 Loc 1 NoGo response 

Stimulus 
@  Loc 1 Hit (HR) Miss (MR) 

Catch 
(No stimulus) False-alarm (FA) Correct rejection 

(CR) 

 

 

B. 3x3 stimulus-response contingency table for a 2-ADC task. 

                  Response 

 

Stimulus 

Go response @  
Loc 1 

Go response @  
Loc 2 

NoGo response 

Stimulus 
@  Loc 1 

Hit (HR1) Misidentification 
(incorrect)  

Miss (MR1) 

Stimulus 
@  Loc 2 

Misidentification 
(incorrect) 

Hit (HR2) Miss (MR2) 

Catch 
(No stimulus) 

False-alarm (FA1) False-alarm (FA2) Correct rejection (CR) 

 

In 2-AFC (Yes/No) tasks there is only one false-alarm: a Go response during catch trials (FA). In addition to 
this, another type of false-alarm response can occur in 2-ADC tasks: a Go response at a location when a 
stimulus was presented at the opposite location (gray shaded cells).



Table S2. Simulated parameter recovery with MLE and MCMC. 

A. Parameters used in the simulation. 

Parameter Location 1 Location 2 

sensitivity d1 = 1.0 d2 = 1.0 

criterion c1 = -0.25 c2 = 0.75 

noise ε1 = N(0, 1) ε2 = N(0, 1) 

stimulus prior probability p1 = 0.25 p2 = 0.25 

 

B. Simulated contingency table of response counts (N = 4000 trials from 20 simulated runs). 

                  Response 

 

Stimulus 

Go response @ 
Loc 1 

Go response @ 
Loc 2 

NoGo response 

Stimulus 

@  Loc 1 
871 66 63 

Stimulus 

@  Loc 2 
422 414 164 

Catch 

(No stimulus) 
1122 263 615 

 

C.  Sensitivities and criteria recovered with maximum likelihood (MLE) and Bayesian (Markov Chain Monte 
Carlo) estimation procedures. 

Parameter MLE (mean ±  SE)  Bayesian (mean ± SE)  95% CI 

sensitivity 
d1 = 1.07 ± 0.06 

d2 = 0.99 ± 0.06 

d1 = 1.07 ± 0.08 

d2 = 0.98 ± 0.08 

d1: 0.98 − 1.16 

d2: 0.89 − 1.08 

criterion 
c1 = -0.27 ± 0.03 

c2 = 0.75 ± 0.04 

c1 = -0.27 ± 0.03 

c2 = 0.75 ± 0.05 

c1: -0.30 − -0.21 

c2: 0.67 − 0.81 

SE: standard error, CI: credible intervals



 Table S3. Maximum likelihood (ML) estimates of the psychometric function with and without 
accounting for bias. 

A. Parameters used in the simulation of a 2-ADC model with bias (c1≠c2). 

Parameter Location 1 Location 2 

sensitivity 

dmax = 2.5 

d1(ξ 1)        n = 2.0 

c50 = 0.35 

dmax = 2.5 

d2(ξ 2)        n = 2.0 

c50 = 0.35 

criterion c1 = 0.1 c2 = 0.7 

noise ε1 = N(0, 1) ε2 = N(0, 1) 

stimulus prior probability p1 = 0.25 p2 = 0.25 

 

B. ML estimates of 2-ADC psychometric parameters with and without accounting for bias. 

Parameter MLE with bias  
(mean ±  SE)  

MLE without bias  
(mean ±  SE)  

sensitivity 

dmax = 2.48 ± 0.03 

d1(ξ 1)            n = 2.01 ± 0.05 

c50 = 0.34 ± 0.006 

 

dmax = 2.49 ± 0.03 

d2(ξ 2)            n = 2.03 ± 0.04 

c50 = 0.35 ± 0.005 

dmax = 3.03 ± 0.05 

d1(ξ 1)             n = 1.69 ± 0.04 

c50 = 0.33 ± 0.008 

 

dmax = 2.49 ± 0.03 

d2(ξ 2)             n = 2.95 ± 0.07 

c50 = 0.38 ± 0.004 

criterion 
c1 = 0.10 ± 0.002 

c2 = 0.71 ± 0.003 

c1 = 0.35 ± 0.002 

c2 = 0.35 ± 0.002 

 

 

 


