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We present a computational model of basal ganglia as a key player in exploratory behavior. The model
describes exploration of a virtual rat in a simulated water pool experiment. The virtual rat is trained
using a reward-based or reinforcement learning paradigm which requires units with stochastic behavior
for exploration of the system’s state space. We model the Subthalamic Nucleus-Globus Pallidus externa
(STN-GPe) segment of the basal ganglia as a pair of neuronal layers with oscillatory dynamics, exhibiting
a variety of dynamic regimes such as chaos, traveling waves and clustering. Invoking the property of
chaotic systems to explore state-space, we suggest that the complex exploratory dynamics of STN-GPe
system in conjunction with dopamine-based reward signaling from the Substantia Nigra pars compacta
(SNc) present the two key ingredients of a reinforcement learning system.
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1. Introduction

The basal ganglia (BG) are a group of sub-cortical
nuclei buried deep within the telencephalon. The
term basal ganglia is often used to refer to a collec-
tion of nuclei including the corpus striatum (caudate
nucleus and the lenticular nucleus, which includes the
putamen and the globus pallidus) and other subcor-
tical nuclei such as the subthalamic nucleus (STN),
the substantia nigra (SN) (consisting of the pars
compacta (SNc) and pars reticulata (SNr)), and the
pedunculopontine tegmental nucleus (PPTg). The

putamen and caudate are often collectively referred
to as the striatum.1

The basal ganglia have long been afforded the role
of a gate or a selector among action representations
in the cortex competing for limited resources. In fact
some have called these nuclei the Vertebrate Solu-
tion to the Selection Problem.2 They have also been
implicated in sequence generation,3 and working
memory.4 Their dysfunction in motor disorders such
as Parkinsons disease has been well documented.5 In
the present work we assign yet another role to the
basal ganglia (specifically to the STN-GPe segment
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within the basal ganglia) — as a system that pro-
vides the exploratory drive needed in activities like
navigation, foraging and the like.

The term reinforcement learning is, in fact,
derived from animal learning studies in experimental
psychology. This form of learning signifies the cou-
pling between occurrence of an event and a response,
wherein the occurrence of the event tends to increase
the probability of occurrence of the response under
similar external conditions if the response should
result in a general improvement of the state of affairs
of the animal.6 Reinforcement learning is, thus, that
form of unsupervised learning where the training sig-
nal is in the form of a global scalar known as the
reward.

Neural network models of reinforcement learning
use stochastic output units for exploration of out-
put state space, i.e., the only way the network can
know the correct response to an input is by guess-
ing. The probabilistic output neurons ensure that the
system thoroughly explores the space of responses to
a certain input so that, the correct response when
it occurs can be reinforced. Chaotic systems have
been known to exhibit exhaustive exploration of their
state-space. It is well-known that a network of non-
linear oscillators is intrinsically chaotic.7 Recently
a network of oscillators has been proposed as a
model of motor unit recruitment in skeletal mus-
cle. The complex dynamics of the network is used
to model desynchronized activity of motor neurons in
healthy muscle.8 Oscillatory neural activity is known
to exist in several structures in the brain including
the basal ganglia, hippocampus, sensory cortices etc.
Oscillatory dynamics in the basal ganglia have been
observed at the level of the Sub-Thalamic Nucleus —
Globus Pallidus network.9,10 The STN-GPe network,
depending on the patterns of the interconnections
and values of the interconnecting weights, has been
shown to support three general classes of sustained
firing patterns: clustering, propagating waves, and
repetitive spiking that may show little regularity or
correlation.10 Furthermore, it has also been demon-
strated that each activity pattern can occur contin-
uously or in discrete episodes.

The mesencephalic dopaminergic input to the
basal ganglia might help modulate the activity of the
STN-GPe loop by serving as a reward signal to these
units in the so-called indirect pathway in the basal

ganglia.3 We hypothesize that the complex oscilla-
tions of the STN-GPe segment within the basal gan-
glia provide the exploratory dynamics necessary for
reward-based or reinforcement learning.

The paper is organized as follows: In the follow-
ing section we elaborate on the exact role of the basal
ganglia in exploratory behavior. We then present a
computational model of the STN-GPe segment as a
network of oscillatory neurons. In the next section we
evaluate this network in the context of a simulated
waterpool experiment. In real versions of these exper-
iments a rat has to learn the location of a submerged
(invisible) platform in a pool of water based on spa-
tial cues placed around the pool. We then discuss
pathologies arising out of disruption of the dopamine
reward signal due to simulated lesions of the mesen-
cephalic dopaminergic centers or the SNc. Finally we
conclude with a discussion on the unique dynamics
exhibited by the oscillatory network and its signifi-
cance in a biological context, and the evidence from
neurophysiology underlying our model.

2. The Model

2.1. Description of the basal ganglia
model

The general consensus regarding signal flow in
basal ganglia is as follows11: The striatum (cau-
date/putamen) receives and integrates input coming
from the cortex (visual/motor). The input is often
in the form of competing action representations,
the competition among which needs to be resolved
and this resolution, we propose, takes place at the
level of the striatum itself. The striatum then sends
inhibitory input to a specific region in the GPi (EP)
or the SNr which then disinhibit a particular region
at the level of the thalamus (motor selection) or the
superior colliculus (in case of visual selection) respec-
tively to carry out the selected action. It is apparent
that the most disinhibited action will eventually win
the competition and be selected (Fig. 1). Further,
there exist inhibitory projections from the GPe to
the STN, and excitatory projections from the STN
back to the GPe. The STN-GPe system is thus ide-
ally placed to produce oscillations.9

We propose a simplified three layer architec-
ture (Fig. 2) for the basal ganglia consisting of an
input layer representing visual input, a hidden layer
representing the oscillatory STN-GPe system, and an
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Fig. 1. Representative block diagram of the basal gan-
glia neuroanatomy. White arrows indicate excitatory
connections, while black arrows indicate inhibitory con-
nections. Arrows with dotted borders indicate dopamin-
ergic excitatory (white) and inhibitory (grey) input from
the SNc. The putamen is the striatal segment involved
in motor activity and selection. The Direct pathway
consists of the inhibitory interconnections between the
putamen and the GPi. The Indirect pathway involves
the STN-GPe loop which, we propose, is responsible
for the exploratory behavior. The output stage of the
basal ganglia, viz. the GPi (in case of the motor loop)
or SNr (in case of the visual loop), decides the action
modality to be selected by disinhibition of the thalamus.
Dopamine secreted by the SNc modulates striatal activ-
ity, mainly by inhibiting the indirect and facilitating the
direct pathways.1 Here we propose that dopamine reg-
ulates the Striatal-GPe connection weights leading to
reinforcement learning. Other pathways involving sen-
sory/motor cortical projections are not considered in the
present model.

output layer representing the selected movement of
the animal for the given input. In neurophysiological
terms, the input to the first layer represents the unre-
solved, competing visual representations arising from
the cortex reaching the striatum (caudate/putamen).
The activity of the hidden layer consisting of oscil-
latory units corresponds to the lumped activity of
the STN-GPe oscillatory network. The output at the
final layer corresponds to the motor output at the
level of GPi (or EP in the case of the rat) to which
the STN projects. It is this motor modality that
is inhibited at the GPi which leads to disinhibition
at the level of the thalamus which eventually leads
to activity corresponding to a particular action or
action sequence being initiated in the motor cortex.

Fig. 2. Overall architecture of the network is shown on
the left. The visual input from the cortex is presented to
the STN-GPe layer through a set of weights. Interaction
between STN and GPe layers produces complex oscilla-
tory activity. Activity of STN layer is fed to the output
layer. A detailed diagram of connectivity in the STN-
GPe layer is shown on the right. The gray box depicts
the lateral connectivity profile of STN neurons with an
inhibitory center and excitatory surround (ref. Eq. (7) in
text).

We suppose that the reward signal received from
the limbic system is translated into fluctuations from
baseline levels of dopamine secreted by the mesen-
cephalic dopaminergic system comprising of the Ven-
tral Tegmental Area (VTA) and the SNc (substantia
nigra pars compacta) nucleus of the basal ganglia.12

There is an increase in the overall level of dopamine
when there is a positive reward and a corresponding
decrease in case of a negative reward, with the mag-
nitudes of these fluctuations being correlated with
the magnitudes of the rewards. This reward signal
(i.e., level of dopamine) is propagated as a global
reinforcement signal that serves to modify the synap-
tic weights both among striato-pallidal (STR-GPe)
and pallido-peduncular (STN-GPe to GPi) projec-
tions thereby leading to learning, i.e., the generation
of a potentially rewarding motor output based on the
current sensory input.

In the following sub-sections, we describe the sys-
tem of equations that governs the behavior of our
neural network model:

2.1.1. The input layer

The activity, x, of the input layer, is projected via
the weights, W in, to the STN-GPe layer as input I,
which is computed as:

Iij =
∑

k

W in
ij;kxk (1)
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2.1.2. Oscillatory STN-GPe layer dynamics

Unlike neurons in the input layer, which do not
have lateral connections, each neuron in the STN
is connected to a 2-dimensional neighborhood. Con-
nections between STN and GPe are assumed to be
one-to-one (Fig. 2). If Vij represents activity of STN
neuron (i, j) and Sij represents activity of GPe neu-
rons, the STN-GPe interaction may be described as:

duij

dt
= −uij +

∑
i′,j′∈A

W lat
iji′j′ tanh(λui′j′ )

−Sij + Dij + Iij (2a)

Vij = tanh(λuij) (2b)

dSij

dt
= −Sij + Vij (3)

where A is the neighborhood of lateral connections
in the STN with weights W lat

iji′j′ between neurons
(i, j) and (i′j′). Equations similar to (2) and (3) have
been used by Gillies et al.9 to describe their model of
STN-GPe interaction. An analysis of the system of
equations, similar to (2) and (3) above, for a single
oscillator, demonstrating the existence of a unique
stable limit cycle, is provided as an Appendix.

A special feature of our equations, Dij , repre-
sents the effect of dopamine on STN layer activ-
ity. In line with thinking that implicates dopamine
in reward signaling12 we assume that the dopamine
levels available in STN (due to inputs from mesen-
cephalic dopamine systems) determine activity lev-
els of the oscillatory units of STN. The higher
the dopamine levels, the greater the number of
units that are active at any given instant. This
is achieved by introducing auxiliary dynamics as
described next.

Let D(0 < D < 100) be the level of dopamine
available in STN. When D = 0, the least number of
STN neurons are ON; when D = 100 nearly all STN
neurons are ON. This is achieved by varying Dij as
a function of the number of active STN neurons. Let
e denote the discrepancy between the actual number
of active units, Da, and dopamine levels at a given
instant, then:

Da =
N∑
i,j

Vij (4a)

e = D − Da (4b)

where N is the number of neurons in the STN grid.
This discrepancy or error is accumulated in E as,

dE

dt
= tanh(λe) (5)

and presented as input Dij , where,

Dij = E − N

2
(6)

to STN neurons as in Eq. (2).
The lateral connections,

(
W lat

iji′j′
)
, within STN

layer are assumed to be translation invariant and
are given by:

W lat
iji′j′ = ε − ae(−rlat

2/σlat
2), for r < R

= 0, otherwise (7)

where rlat = [(i − i′)2 + (j − j′)2]1/2; a controls
the depth of the Gaussian bell function and σlat its
width; and R is the neighborhood size. Thus each
unit has a negative center and a positive surround;
the relative sizes of center and surround are deter-
mined by ε. Smaller ε implies, more negative lateral
STN connections, which tends to decorrelate oscilla-
tions of STN neurons. In the absence of input from
the input layer (i.e., Iij = 0), as ε is varied from 0
to a, the activity of STN-GPe system exhibits three
different regimes: (1) chaos, (2) traveling waves, and
(3) clusters (Fig. 8). Operation of the network in
the first regime, viz. chaos, is the most crucial since
it is the chaotic dynamics in the STN-GPe layer
that makes the network extensively explore the out-
put space.

2.1.3. Dopamine based reward signal

An animal receives reward from the environment
based on its actions. In our model network reward
is a global, scalar signal, r, which depends on the
outcome of the output of the network in the current
state of the environment (betterment of the current
state leads to positive reward and vice versa). The
reward plays a key role in training the network. The
first weight stage (between input layer and the STN-
GPe layer) is trained by reinforcement learning (see
Ref. 6). The reward signal is transformed into the
dopamine level, D, by the SNc and transmitted to
the STN layer where it controls the average activity
of STN neurons.
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Therefore, the reward indirectly controls learning
in first stage weights, as described next. Training in
the second stage weights (between the STN-GPe sys-
tem and the output layer) follows a form of winner
take all mechanism.

2.1.4. Learning rule for the first stage (input
layer to STN-GPe layer) weights

The first stage layer weights are updated by Hebbian
learning as follows:

∆W in
ij;k = ηVijxk (8)

where η is the learning rate. High reward situations
result in higher dopamine levels in STN layer which
in turn increases average value of Vij , (〈Vij〉); con-
versely absence of reward or even negative reward is
associated with lesser values of 〈Vij〉. Thus reward,
via dopamine levels, D, and 〈Vij〉, indirectly controls
the learning rate of first stage layer weights. This
is similar to the manner in which reward controls
learning rate in neural network models of reinforce-
ment learning. The only difference in our case is that
learning rate modulation is achieved via dopamine
levels D.

2.1.5. Output layer activation

Each output node represents an action choice the
network has to make. When an input is presented
the action corresponding to the winning node is exe-
cuted. The response, Om, of the output neurons is
calculated as,

Om = e

(
−‖V −W out

m ‖2
/σ2

)
(9)

where V is the activity of the STN layer, and W out
m is

the weight vector feeding into the mth output node
(from the STN layer).

∆W out
m∗ = α+(V − W out

m∗ ), if reward r > 0 (10a)

∆W out
m∗ = α−(V − W out

m∗ ), if reward r < 0 (10b)

where m∗ is the index of the winning neuron,
α+(> 0) and α−(< 0) are reward-dependent learning
rates, and r is the global reward signal.

The only difference between the proposed rule
and the traditional competitive learning rule is that
in traditional competitive learning, the output of the
hidden layer is not used directly as input for the
output layer in the learning rule, but the desired
value of the output of the hidden layer is used while

learning. However, since learning is unsupervised in
our model, this desired value is not known before-
hand, and the hidden layer output is used as is. Fur-
thermore, it has been shown that only one action
modality gets selected by the basal ganglia by dis-
inhibiting a specific region in the GPi. Hence we
have found it biologically salient to use the com-
petitive learning rule for training the output layer
weights.

In summary, the network described above is
solving an input-output mapping problem with
global reward information. The exploratory dynam-
ics, required to learn solely from reward (without an
explicit teacher), is provided by the oscillatory STN-
GPe layer. The activity of the STN-GPe layer is suf-
ficiently complex only when the lateral connections
are negative. Reward, and hence dopamine level, con-
trols the activity levels of STN layer. Since the first
stage weights are trained by reinforcement learning,
reward indirectly controls the learning rate of the
first stage weights.

3. The Simulated Waterpool
Experiment

The above network is used to drive exploratory
behavior in a simulated version of the so-called water
pool experiments. In real water pool experiments,
a rat is made to explore a pool of water searching
for a submerged platform, which is invisible since
the water is muddy. The rat attempts to navigate
towards the platform with the help of landmarks
placed around the pool. On reaching the platform the
rat receives an intrinsic reward (relief) or an exter-
nal reward administered by the experimenter. The
experiment is repeated by throwing the rat at vari-
ous locations in the pool.

The setup used in our simulation is depicted in
Fig. 3. The large circle represents the water pool.
The small segment on the right of the pool is the
submerged platform. Eight landmarks are placed
around the periphery of the circle with uniform spac-
ing. The landmarks are vertical poles with differ-
ent height and are assumed to be uniquely iden-
tifiable by some property other than the height,
such as, color. The model rat has an angle of
vision of 180 degrees. The rat is also assumed
to have a position (point size) and an orienta-
tion (heading) in the water pool at any instant.
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Fig. 3. The water pool experimental setup — the water-
pool is in the form of a circle centered at the origin. The
eight poles around the rim of the pool (at angular sep-
arations of 45◦) are represented by squares. The line at
x = 4 represents the edge of the platform. The platform
is thus the minor segment of the circle bounded by this
line. (The concentric circles (r = 30 cm, 60 cm and 90 cm)
and radial lines (in steps of 30◦) emanating from the cen-
ter of the pool are merely shown as reference for a polar
coordinate system).

From a given viewing point the rat can see a
view containing a subset of the landmarks present
around the pool. The view is encoded as a view-
matrix, the construction of which is described
below.

View-matrix construction

The virtual rat’s visual field input is split into Ns

sectors, which are represented by the columns of the
view-matrix, Iv, of size Nl × Ns, where Nl is the
number of landmarks. The lth element of the sth col-
umn in Iv is nonzero if the lth landmark is present
in the sth sector of the rats current view. The mag-
nitude of that non-zero element is proportional to
the size of the retinal image of that landmark. All
other entries in the sth column are zero since, the
way the environment is arranged, typically only one
landmark is present in a single sector of the view.
This view-matrix, Iv, is resized into a column vector
and presented as input, x, to the network in Eq. (1).

Output representation

The view-vector is presented as an input to the
3-layer network of Fig. 2. Activity of the output layer
represents the rat’s motion in response to the cur-
rent view. Each node in the output layer represents
a displacement direction. The rat is displaced in the
direction corresponding to the encoded direction of
the winning node in the output layer. The rat moves
a fixed distance of d per time step. The motion of
the rat results in a change in its view and the cycle
continues.

3.1. Simulation results

In this section we will briefly describe the experimen-
tal parameters and various outcomes of the computer
simulation experiments based on the reinforcement
learning framework discussed above.

Water-pool configuration: In the present computa-
tional experiment the radius of the tank is 100 cm
with the platform in the shape of a minor segment
of the circular tank bound by a chord, at a distance
of 80 cm from the center of the circle (Fig. 3). Thus
the ratio of the area of the platform to that of the
tank is around 1:19.214, i.e., the platform area is only
around 5% of the tank area. The rat is assumed to
be able to swim a distance of 6 cm per time step and
consequently would require only around 30 steps to
reach the platform if perfectly trained and correctly
oriented, even if it be placed at a point furthest from
the platform (the end of the diameter perpendicular
to the chord bounding the platform that does not lie
within the platform).

Pole arrangement : There are 8 (= Nl) equally spaced
poles of varying heights ranging between 100 to
−100 (negative value indicates an inverted pole with
respect to a reference level) placed all around the
platform.

View Matrix : The rat has a field of vision of 180◦

(90◦ on either side) which is split into Ns = 3 sectors.
Thus the view-matrix, Iv, of size 8×3, is constructed
as described above. This matrix is transformed into
a vector of 24 (= Nl × Ns) elements and presented
as input the network.

STN-GPe layer : A 10×10 grid of oscillatory neurons
is chosen for the STN-GPe layer.

Output layer : The output layer consists of K (= 5)
neurons which produce output by a winner-take-all
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mechanism and map onto K distinct output states.
The maximum movement deviation angle, Tmax/2, is
30◦, i.e., thirty degrees on either side of the current
orientation.

Fluctuations in D : The dopamine level (D) pro-
viding the reward signal is assumed to be linearly
proportional to the reward obtained with a max-
imum/minimum value for the fluctuations that is
approximately 50% of the baseline value. Thus for
a baseline value of, say 50, the dopamine level varies
between 25 for reward, r = −1 and 75 for r = +1.

There are two phases in the network simulation,
viz., training and testing.

3.1.1. Training

In the training phase the rat is set at random loca-
tions in the water pool at random orientations and is
allowed to wander. Based on its current input vector
and weight configurations, the rat wanders around
the water pool, initially in an almost random fashion
until it hits upon the platform by chance. When this
occurs, a positive reward of +1 is provided to the
rat based on the input and output of the previous
step, so that the rat learns to select the appropriate
output maneuver for each kind of visual input before
entering the platform.

During its wandering in the water-pool the rat
often comes into contact with the walls of the
pool i.e., its trajectory often attempts to cross
the pool’s dimensional limits. In the simulation,
at these instances, the rat is bounced off the wall
and given a negative reward of −0.3, correspond-
ing to the physical discomfort of dashing against the
wall, so that it learns to actively avoid the walls.
No weight update/reinforcement occurs during the
wandering motion of the rat (except negative rein-
forcement at the walls) until the rat reaches the
platform.

The rat, after several iterations learns to head
directly to the platform with minimal wandering as
shown, for example in Fig. 4, for extreme orienta-
tions of the rat towards the platform. A plot of the
mean number of steps to platform vs. training time
corresponding to one set of training trials can be
found in Fig. 5a. It is clear from this figure that
as training progresses, the rat learns to effectively
navigate towards the platform in fewer steps on an
average. The average number of bounces off the wall

vs. training time is plotted for the same training
sequence in Fig. 5b. Here the wall avoidance learning
is apparent.

3.1.2. Testing

This phase involves testing the rat’s movements
without any update to the neural network weights,
i.e., without providing any form of reinforcement,
neither positive reward at the platform nor negative
reward at the walls. This phase, though not biolog-
ically very realistic, is a standard practice in neural
network literature to evaluate network performance.

While testing, the rat learns to efficiently avoid
the walls, and once its view is within a reasonable
range of the platform, heads in an almost straight
line for the platform. In this phase we find inter-
esting dynamics of the oscillatory STN-GPe layer
as shown in Fig. 6. As the rat approaches the plat-
form, the STN-GPe layer settles into a bistable state
and each of the neurons enter either into a periodic
alteration or a sustained maintenance of their respec-
tive outputs. Figures 6a and 6b depict both of these
states of the network. On the contrary, when the
rat is looking away from the platform, and explor-
ing the other parts of the pool, the dynamics of
the STN-GPe layer become chaotic, characteristic
of wandering activity. The STN neurons settle into
the rhythmic oscillations again only after the plat-
form has been sighted. A few snapshots of the kind
of STN-GPe layer dynamics during exploration are
presented in Fig. 7.

In order to characterize the observed dynam-
ics of the STN-GPe layer for each of the heading
toward and heading away cases, two measures, viz.,
(1) effective dimension and (2) average correlation
coefficient are computed.

Effective dimension is a measure of the effective
number the degrees of freedom of the activity, v(t),
of a system. Let λk and λmax be the kth and the
highest eigenvalues of the autocorrelation matrix
of the activity, v(t), over a duration of interest,
such that λmax/λmax = 1

2 . Then k is the effective
dimension.

Average correlation coefficient is the average value
of correlation between pairs of components of v(t),
say, vi(t) and vj(t). The averaging is performed
over a large number of randomly chosen pairs of
components.
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(a) (b)

(c) (d)

Fig. 4. Various trajectories taken by the rat for different initial locations (depicted as dark circles) and initial orientations
(depicted by a short arrow emanating from initial location). Cases (a) and (b) show navigation to the platform when the
platform is initially somewhat within visual range. Cases (c) and (d) indicate more difficult navigations when the platform
is far removed from initial visual range.

The values of these parameters are indicated in
Figs. 6 and 7 for the various dynamic regimes of the
network characterizing the behavior of the rat.

4. Pathologies

Pathologies arising out of disruption of the dopamine
reward signal due to lesions to the mesencephalic
dopaminergic centers or the substantia nigra pars
compacta (SNc) are discussed in the present sec-
tion. This is simulated in the computer experiment

by fixing a limit on the maximum level of dopamine
available to the network which results in a spurious
decrease in the magnitude of the reward signal that
is fed into the network.

The network was simulated with a maximum
D value of 10, and a minimum value of 0. The
resulting behavior of the rat, viz. its motion is
depicted in Fig. 9. It is found that the rat moves
predominantly in circles and exhibits a severe turn-
ing bias. Consequently the rat fails to explore the
tank properly and therefore reinforcement learning
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(a)

(b)

Fig. 5. (a) A plot of mean number of steps to reach
the platform versus training cycle number. There is a
gradual reduction in the mean number of steps to reach
the platform as training progresses (averaged over several
training cycles); (b) A plot of mean number of bounces
off the wall before reaching the platform versus training
cycle number. There is a marked reduction in the mean
number of bounces off the walls as training progresses.
The trends (dotted lines) are running means of the solid
line values.

(which has its basis in exploration) is impaired.
The history of the number of steps taken to
reach the platform is depicted in Fig. 10. It can
be seen that unlike the case with 50% base-
line D, in the present case, the number of steps

(a)

(b)

Fig. 6. The two-states characterizing the oscillatory
dynamics of the hidden layer when the rat is head-
ing toward the platform. The network periodically shut-
tles between these two states during the rat’s platform
directed motion. The effective dimension and average cor-
relation coefficient for these states were evaluated and
found to be 2 and −0.4432 respectively, which indicates
that familiarity of the visual input is responsible for
reducing chaos in the oscillatory layer and curtailing the
exploratory dynamics.

taken by the rat to reach the platform is erratic,
and does not decrease with further training cycles
indicating insufficient, impaired learning.

5. Discussion

In the present discussion we focus on biological con-
straints under which we have developed our model.
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(a)

(b)

Fig. 7. Some sample hidden layer network states when
the rat is looking away from the platform. The effective
dimension and average correlation coefficient for these
states were evaluated and found to be 6 and 0.3743
respectively, which indicates that novelty in the visual
input causes chaotic dynamics in the oscillatory layer
that encourages exploration.

Thus, we present the evidence from literature for the
involvement of basal ganglia in exploratory behav-
ior as well as the neurophysiological mechanisms for
D-level (dopamine level) learning by the STN-GPe
loop. Thence we present evidence for similar neural
dynamics observed in the olfactory bulb for famil-
iar and unfamiliar odors and correlate this obser-
vation with our oscillatory network behavior under
novel vs familiar circumstances. We also attempt to

(a) Chaos

(b) Traveling waves

(c) Compact center

Fig. 8. Three characteristic patterns of activity of the
STN-GPe layer — (a) chaotic, (b) traveling waves and
(c) compact center. The three activity regimes (from top
to bottom) are obtained by progressively increasing ε (in
Eq. (7)) from 0 to 2. Increasing ε increases the percentage
of positive lateral connections in STN. In regime (c), com-
pact center, the array splits into a center and a surround,
with neurons in either region forming a synchronized
cluster. Similar activity patterns have been observed by
Terman et al. in their model of basal ganglia.10

justify the competitive learning rule in the output
layer based on the loser take all learning rule of
Berns and Sejnowski (see Ref. 13). Scope for further
work in modeling basal ganglia pathologies is also
discussed.

5.1. Evidence from literature for basal
ganglia role in exploration

The basal ganglia have traditionally been charac-
terized chiefly by two pathways, the direct and



April 27, 2006 17:29 00054

The Role of the Basal Ganglia in Exploration in a Neural Model 121

Fig. 9. Trajectory of the rat after disruption of
dopamine reward signal due to lesions in the mesen-
cephalic dopaminergic system or the SNc nucleus. The
rat moves in circles with a severe turning bias leading
to loss of exploration, thereby causing impairment in
learning.

indirect pathways.1 The direct pathway is involved
in the learning of potentially rewarding behaviors
(by LTP of the cortico-striatal NMDA glutamate
synapses via expression of the c-fos gene), select-
ing (providing the GO signal for) such behaviors
from among many competing actions. The indirect
pathway is involved in learning to abstain from
potentially unrewarding responses (by LTD of the
corresponding cortico-striatal synapses), thereby
providing the STOP signal for behaviors eliciting no
reward.14 However as pointed out by Gillies et al.9

this simple description is fast becoming obsolete in
the light of new findings about the striatal pathways.
In their opening note, Gillies et al.9 observe that
“. . . contemporary neuroanatomy of the basal ganglia
reveals a prominent feedback system, involving the
excitatory subthalamic nucleus and the inhibitory
globus pallidus. . . ”

That the cortex is not indispensable for
exploratory behavior, is apparent from observations
in literature. For instance the study by Grillner
et al.15 clearly obviates the need for the cortex
in planned, goal-directed behaviors. It has been
observed that even in advanced mammals like the
cat, goal-directed locomotion is retained after an
of the entire cerebral cortex that leaves the rest

Fig. 10. A plot of mean number of steps to reach the
platform versus training cycle number in the case of the
pathology (of disrupted dopamine reward signal). It can
be seen that there is an erratic variation and no observ-
able reduction in the mean number of steps to reach
the platform as training progresses due to impairment
in learning.

of the forebrain intact (including the basal gan-
glia and hypothalamus). Decorticated kittens have
been found to exhibit periods of rest alternating
with patterns of activity including searching for
food and remembering location of food — all of
which are examples of exploratory behavior. Grillner
et al.15 conclude that “. . . The neuronal substrate
contained in a forebrain devoid of the cerebral cortex
is thus able to produce surprisingly complex, goal-
directed patterns of behavior15 . . . ”, thus strength-
ening our case for the involvement of the basal
ganglia in exploratory behavior leading to reinforce-
ment learning.

5.2. Mechanism for the learning driven
by the level of dopamine in the
STN-GPe loop

The D-level learning by the STN-GPe loop was
achieved in the network model by a simplified
Hopfield network model. We hypothesize the neu-
ral correlate of this network to be pallido-nigro-
striatal circuit involving projections from the GPe
to the SNc and back to the striatum. The detailed
mechanics of this feedback learning are as fol-
lows: The STN-GPe oscillator attempts to learn
the level of Dopamine signal which is fed in via
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the SNc-Striosomal projections through the stri-
atal Matrix into the GPe. The error signified by e

(Eq. (4b)) is back propagated through the GPe-SNc
(pallidal-nigral) projection (of which there is little
documented literature), and it is hypothesized that
neurons in the SNc compute the difference between
the actual percentage of GPe units that are active
(Da) and the percentage that are required to be
active (as given by their own activity reflecting the
amount of dopamine, D), thereby feeding the error
signal back into the striatum and further to the
GPe-STN loop where it may modulate the percent-
age of active neurons according to Eqs. (2) and (3).
This idea of error-back propagation is similar to that
proposed by Berns and Sejnowski3 wherein the error
signal, e, computed by hypothetical projections from
the striatum and the GPi to the SNc/VTA, modu-
lates the STN-GPe synaptic weights.

5.3. Discriminating novel from
familiar odors: The case of
olfactory bulb

It has been observed using grid electrode recordings,
that neurons in rabbit olfactory bulb exhibit charac-
teristic responses to novel and familiar odors. When a
familiar odor is presented to the animal, the olfactory
bulb responds with a rhythmic waveform; however,
when the stimulus is novel or unfamiliar, activity in
the bulb exhibited chaotic wandering.16 This is anal-
ogous to the STN-GPe layer in our model. When the
rat is looking away from the platform and is search-
ing for it, the STN-GPe layer exhibits a desynchro-
nized pattern of activity, whereas, when the rat is
heading straight towards the platform, the activity
of the STN-GPe layer switches periodically between
only two states (Figs. 6 and 7).

5.4. Motor selection vis-a-vis
competition at output layer

The model of the basal ganglia proposed by Berns
and Sejnowski (see Ref. 13) is based on the premise
of ‘action selection’ and emphasizes possible timing
differences between the direct and indirect pathways
in a model that included only feed-forward intrin-
sic basal ganglia connections. An interesting fea-
ture of this model is that it incorporates a version
of the dopamine hypothesis for reinforcement learn-
ing as a means for adaptively tuning the selection

mechanism.11 At the output layer, the GPi (or EP),
the final action selection occurs through disinhibi-
tion of the thalamus (via inhibition of the GPi), and
this is presumed to occur by a loser take all learning
mechanism wherein the most inhibited GPi region
corresponds to the action modality that finality gets
selected. We therefore justify our use of the competi-
tive learning rule for the output layer based on these
observations in literature.

5.5. Modeling pathologies

In the present work we have studied only the patholo-
gies arising out of the disruption of the dopamine
reward signal in the basal ganglia. The loss of
dopamine signal, in fact, corresponds to the con-
dition of Parkinsons disease where there is a drop
in baseline dopamine levels due to the degenera-
tion of the SNc (Substantia Nigra pars compacta)
nucleus that is involved in dopamine production.
The pathologic rat in our model exhibited a sus-
tained pattern in network output, due to a drop
in baseline dopamine levels from 50% to 5%, and
given that the only output of the network is a turn-
ing angle, this led to a severe turning bias. It may
hence be fitting to consider this inability to initi-
ate novel movements analogous to the symptoms
of akinesia and bradykinesia exhibited by Parkin-
sonian patients. It would be interesting to observe
the behavior exhibited by the rat under pathological
conditions of disruption of the interconnectivity pat-
terns within individual layers, and is a direction for
future research.

In fact, it has been demonstrated by Terman
et al.10 that this weakened intra-pallidal inhibition
within the indirect pathway can switch the dynamics
of the circuit from chaotic (or irregular) to periodic
(or rhythmic) in the form of traveling waves. Terman
et al.10 conclude that this kind of observation may
be sufficient to explain the emergence of correlated
oscillatory activity in the subthalamopallidal circuit
after destruction of dopaminergic neurons in Parkin-
sons disease and in animal models of Parkinson-
ism. Therefore, it appears that while complex non-
periodic activity is a sign of normal STN, coherence
and loss of complexity marks pathological function.

In a completely different context, working with a
model of motor-unit recruitment in skeletal muscle,
Chakravarthy et al.8 arrive at analogous conclu-
sions. The model predicts that complex, non-periodic
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activity in the a-motor units of spinal cord are a
prerequisite for a skeletal muscle to reliably follow
a motor command originating from higher centers.
When the motor unit activity became rhythmic (due
to disruption in lateral connectivity), the muscle
failed to follow the motor command. Interestingly, it
is known from electromyographic (EMG) recordings
from individual muscle fibers, that in normal mus-
cle activity of individual fibers is desynchronized17;
whereas in diseased muscle (e.g., polio) the activity
is highly correlated.18

6. Conclusion

We have presented a simplified computational model
of the basal ganglia and have demonstrated its role
in exploratory reinforcement learning by simulating
the hidden layer oscillatory dynamics with an inter-
connected network of neurons representing the STN-
GPe segment. We have shown that such a network is
capable of learning well under external reinforcement
cues by studying the behavior of a rat learning the
location of a submerged platform in a circular tank
of water when dropped at random locations and at
random orientations in the tank and left to fend for
itself.

While it is the hippocampus which has received
the greatest attention as the key player in spa-
tial exploratory behavior (e.g., maze learning in
rats), we propose that the validation of our model
would require similar data from basal ganglia. In the
meantime we can only point to available observed
data from the human STN-GPe loop,5 and compu-
tational models constructed on the basis of these
experiments.10

In furtherance of our of hypothesis regarding
the putative role of the basal ganglia in exploration
based reinforcement learning, we direct the reader’s
attention to a recent article by Kao et al.19 These
authors have shown that a basal ganglia-forebrain
circuit in song-birds, the anterior forebrain path-
way (AFP), contributes to motor learning by biasing
motor outputs towards desired targets or by intro-
ducing stochastic variabilityn required for reinforce-
ment learning.19
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Appendix A Analysis of the Oscillator

The system of equations for single oscillator are given
as,

dx

dt
= −x + v − s + I (A.1)

v = tanh(λx) (A.2)
ds

dt
= −s + v (A.3)

Differentiating (A.1),

d2x

dt2
= −dx

dt
+ λsech2(λx)

dx

dt
− ds

dt
(A.4)

Substituting (A.2) and (A.3) in (A.4),

d2x

dt2
= −dx

dt
+ λsech2(λx)

dx

dt
− (−s + tanh(λx))

(A.5)

Substituting (A.1) and (A.2) in (A.5),

d2x

dt2
= −dx

dt
+ λsech2(λx)

dx

dt

−
(

dx

dt
+ x − v − I + tanh(λx)

)
(A.6)

On rearranging,

d2x

dt2
+

dx

dt
(2 − λsech2(λx)) + (x − I) = 0 (A.7)

Which is similar to Lienard’s equation,

d2x

dt2
+

dx

dt
f(x) + g(x) = 0 (A.8)

where f(x) = 2 − λsech2(λx), and g(x) = x − I

Checking for the Lienards conditions (assume
I = 0):

1. Both f(x) and g(x) are continuous and differen-
tiable ∀x ∈ R;

2. g(−x) = −g(x) ∀x ∈ R (i.e., g(x) is an odd
function);

3. f(−x) = f(x) ∀x ∈ R (i.e., f(x) is an even
function);

4. g(x) > 0 ∀x > 0, x ∈ R

5. The odd function F (x) =
∫ x

0
f(u)du = 2x −

tanh(λx) has exactly one positive zero at x = x0,
is negative for 0 < x < x0, is positive and non-
decreasing for x > x0, and F (x) → ∞ as x → ∞
(one can estimate x0 from the graph of F (x).

The system governed by Eq. (A.6) satisfies Lienard’s
conditions. Hence the system has a unique stable
limit cycle surrounding the origin in the phase plane.
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